Menu Close

If-a-1-a-2-a-n-be-an-arithmetic-progression-then-show-that-1-a-1-a-n-1-a-2-a-n-1-1-a-3-a-n-2-1-a-n-a-1-2-a-1-a-n-1-a-1-1-a-2-




Question Number 4704 by lakshaysethi039 last updated on 25/Feb/16
If a_1 ,a_2 ,.........a_n be an arithmetic progression,  then show that  (1/(a_1 a_n )) + (1/(a_2 a_(n−1) )) + (1/(a_3 a_(n−2) )) +.............+(1/(a_n a_1 ))   = (2/(a_1 +a_n ))((1/a_1 ) + (1/a_2 ) + ......+(1/a_n ))
Ifa1,a2,anbeanarithmeticprogression,thenshowthat1a1an+1a2an1+1a3an2+.+1ana1=2a1+an(1a1+1a2++1an)
Commented by Yozzii last updated on 25/Feb/16
Interesting property of A.Ps of   non−zero terms. I′ve never seen this  before.
InterestingpropertyofA.Psofnonzeroterms.Iveneverseenthisbefore.
Answered by Yozzii last updated on 25/Feb/16
Let S_n =Σ_(i=1) ^n a_i ^(−1)  and J=(1/(a_1 a_n ))+(1/(a_2 a_(n−1) ))+(1/(a_3 a_(n−2) ))...+(1/(a_n a_1 )).  First calculate sums that yield the   denominators of terms of J in terms of a_i .  (1) a_1 ^(−1) +a_n ^(−1) =((a_1 +a_n )/(a_1 a_n ))  (2) a_2 ^(−1) +a_(n−1) ^(−1) =((a_2 +a_(n−1) )/(a_2 a_(n−1) ))  (3) a_3 ^(−1) +a_(n−2) ^(−1) =((a_3 +a_(n−2) )/(a_3 a_(n−2) ))  (4) a_4 ^(−1) +a_(n−3) ^(−1) =((a_4 +a_(n−3) )/(a_4 a_(n−3) ))  ⋮  (n) a_n ^(−1) +a_1 ^(−1) =((a_n +a_1 )/(a_1 a_n ))  Adding lines (1)→(n) we see that   all a_i ^(−1)  are added twice. Hence, we may  write   2(Σ_(i=1) ^n a_i ^(−1) )=((a_1 +a_n )/(a_1 a_n ))+((a_2 +a_(n−1) )/(a_2 a_(n−1) ))+((a_3 +a_(n−2) )/(a_3 a_(n−2) ))+((a_4 +a_(n−3) )/(a_4 a_(n−3) ))+...+((a_n +a_1 )/(a_1 a_n )).  (∗)  We are given that {a_i }_(i=1) ^n  is an   arithmetic progression. Therefore,  a_2 −a_1 =a_3 −a_2 =a_4 −a_3 =...=a_(n−2) −a_(n−3) =a_(n−1) −a_(n−2) =a_n −a_(n−1) .  Using these equations we obtain  a_2 −a_1 =a_n −a_(n−1 ) , or a_1 +a_n =a_2 +a_(n−1) .  Similarly we have a_(n−1) −a_(n−2) =a_3 −a_2   so that a_(n−2) +a_3 =a_(n−1) +a_2 =a_1 +a_n .  Also, a_(n−2) −a_(n−3) =a_4 −a_3   ⇒a_4 +a_(n−3) =a_3 +a_(n−2) =a_1 +a_n .  Upon repeated use of this process we  obtain the numerators of the terms on  the r.h.s of (∗) all being equal to a_1 +a_n .  ∴(a_1 +a_n ){(1/(a_1 a_n ))+(1/(a_2 a_(n−1) ))+(1/(a_3 a_(n−2) ))+(1/(a_4 a_(n−3) ))+...+(1/(a_1 a_n ))}=2S_n   or (a_1 +a_n )J=2S_n   ⇒J=(2/(a_1 +a_n ))S_n       This is valid iff a_i ≠0 for 1≤i≤n.     □
LetSn=ni=1ai1andJ=1a1an+1a2an1+1a3an2+1ana1.FirstcalculatesumsthatyieldthedenominatorsoftermsofJintermsofai.(1)a11+an1=a1+ana1an(2)a21+an11=a2+an1a2an1(3)a31+an21=a3+an2a3an2(4)a41+an31=a4+an3a4an3(n)an1+a11=an+a1a1anAddinglines(1)(n)weseethatallai1areaddedtwice.Hence,wemaywrite2(ni=1ai1)=a1+ana1an+a2+an1a2an1+a3+an2a3an2+a4+an3a4an3++an+a1a1an.()Wearegiventhat{ai}i=1nisanarithmeticprogression.Therefore,a2a1=a3a2=a4a3==an2an3=an1an2=anan1.Usingtheseequationsweobtaina2a1=anan1,ora1+an=a2+an1.Similarlywehavean1an2=a3a2sothatan2+a3=an1+a2=a1+an.Also,an2an3=a4a3a4+an3=a3+an2=a1+an.Uponrepeateduseofthisprocessweobtainthenumeratorsofthetermsonther.h.sof()allbeingequaltoa1+an.(a1+an){1a1an+1a2an1+1a3an2+1a4an3++1a1an}=2Snor(a1+an)J=2SnJ=2a1+anSnThisisvalidiffai0for1in.◻

Leave a Reply

Your email address will not be published. Required fields are marked *