If-a-1-a-2-a-n-be-an-arithmetic-progression-then-show-that-1-a-1-a-n-1-a-2-a-n-1-1-a-3-a-n-2-1-a-n-a-1-2-a-1-a-n-1-a-1-1-a-2- Tinku Tara June 3, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 4704 by lakshaysethi039 last updated on 25/Feb/16 Ifa1,a2,………anbeanarithmeticprogression,thenshowthat1a1an+1a2an−1+1a3an−2+………….+1ana1=2a1+an(1a1+1a2+……+1an) Commented by Yozzii last updated on 25/Feb/16 InterestingpropertyofA.Psofnon−zeroterms.I′veneverseenthisbefore. Answered by Yozzii last updated on 25/Feb/16 LetSn=∑ni=1ai−1andJ=1a1an+1a2an−1+1a3an−2…+1ana1.FirstcalculatesumsthatyieldthedenominatorsoftermsofJintermsofai.(1)a1−1+an−1=a1+ana1an(2)a2−1+an−1−1=a2+an−1a2an−1(3)a3−1+an−2−1=a3+an−2a3an−2(4)a4−1+an−3−1=a4+an−3a4an−3⋮(n)an−1+a1−1=an+a1a1anAddinglines(1)→(n)weseethatallai−1areaddedtwice.Hence,wemaywrite2(∑ni=1ai−1)=a1+ana1an+a2+an−1a2an−1+a3+an−2a3an−2+a4+an−3a4an−3+…+an+a1a1an.(∗)Wearegiventhat{ai}i=1nisanarithmeticprogression.Therefore,a2−a1=a3−a2=a4−a3=…=an−2−an−3=an−1−an−2=an−an−1.Usingtheseequationsweobtaina2−a1=an−an−1,ora1+an=a2+an−1.Similarlywehavean−1−an−2=a3−a2sothatan−2+a3=an−1+a2=a1+an.Also,an−2−an−3=a4−a3⇒a4+an−3=a3+an−2=a1+an.Uponrepeateduseofthisprocessweobtainthenumeratorsofthetermsonther.h.sof(∗)allbeingequaltoa1+an.∴(a1+an){1a1an+1a2an−1+1a3an−2+1a4an−3+…+1a1an}=2Snor(a1+an)J=2Sn⇒J=2a1+anSnThisisvalidiffai≠0for1⩽i⩽n. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-xsin-x-1-x-4-dx-with-real-Next Next post: find-u-n-x-if-u-n-x-u-n-1-x-x-n-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.