Question Number 136614 by bemath last updated on 24/Mar/21
$${If}\:{a}+\frac{\mathrm{1}}{{a}}\:=\:\mathrm{23}\:{then}\:\sqrt[{\mathrm{4}}]{{a}}\:+\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{{a}}}\:=? \\ $$
Answered by mr W last updated on 24/Mar/21
$${a}+\frac{\mathrm{1}}{{a}}=\left(\sqrt{{a}}+\frac{\mathrm{1}}{\:\sqrt{{a}}}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{23} \\ $$$$\sqrt{{a}}+\frac{\mathrm{1}}{\:\sqrt{{a}}}=\mathrm{5} \\ $$$$\left(\sqrt[{\mathrm{4}}]{{a}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{{a}}}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{5} \\ $$$$\sqrt[{\mathrm{4}}]{{a}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{{a}}}=\sqrt{\mathrm{7}} \\ $$
Commented by bemath last updated on 24/Mar/21
$$\:{or}\:\pm\:\sqrt{\mathrm{7}}\:? \\ $$
Commented by mr W last updated on 24/Mar/21
$${no}!\:{without}\:{minus}! \\ $$$$\sqrt[{\mathrm{4}}]{{a}}>\mathrm{0}\:{just}\:{like}\:\sqrt{{a}}>\mathrm{0} \\ $$
Commented by bemath last updated on 24/Mar/21
$${great}\:{sir} \\ $$