Menu Close

if-a-2-b-2-3ab-then-prove-that-log-a-b-5-1-2-loga-logb-




Question Number 10064 by PradipGos. last updated on 22/Jan/17
if a^2 +b^2 =3ab then prove that   log((a+b)/( (√5)))=(1/2)(loga+logb)
$$\mathrm{if}\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{3ab}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{log}\frac{\mathrm{a}+\mathrm{b}}{\:\sqrt{\mathrm{5}}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}{a}+\mathrm{log}{b}\right) \\ $$$$ \\ $$
Answered by ridwan balatif last updated on 22/Jan/17
a^2 +b^2 =3ab→(a+b)^2 −2ab=3ab→a+b=±(√(5ab))  we take a+b=+(√(5ab))  log((a+b)/( (√5)))=log(((√5)×(√(ab)))/( (√5)))                     =log(√(ab))                     =log(ab)^(1/2)                      =(1/2)log(ab)                     =(1/2)(loga + logb) (Terbukti)
$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{3ab}\rightarrow\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} −\mathrm{2ab}=\mathrm{3ab}\rightarrow\mathrm{a}+\mathrm{b}=\pm\sqrt{\mathrm{5ab}} \\ $$$$\mathrm{we}\:\mathrm{take}\:\mathrm{a}+\mathrm{b}=+\sqrt{\mathrm{5ab}} \\ $$$$\mathrm{log}\frac{\mathrm{a}+\mathrm{b}}{\:\sqrt{\mathrm{5}}}=\mathrm{log}\frac{\sqrt{\mathrm{5}}×\sqrt{\mathrm{ab}}}{\:\sqrt{\mathrm{5}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{log}\sqrt{\mathrm{ab}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{log}\left(\mathrm{ab}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}\left(\mathrm{ab}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{loga}\:+\:\mathrm{logb}\right)\:\left(\mathrm{Terbukti}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *