Menu Close

If-a-4-2-1-b-m-1-1-c-3-1-0-are-three-vectors-then-find-the-value-of-m-such-that-a-b-and-c-are-coplanar-and-find-a-b-c-




Question Number 135423 by benjo_mathlover last updated on 13/Mar/21
If a^→ =(4,2,−1), b^→ =(m,1,1)  c^→ =(3^� −1,0) are three vectors  then find the value of m such  that a^→ ,b^→  and c^→  are coplanar and  find a^→ ×(b^→ ×c^→ ).
$${If}\:\overset{\rightarrow} {{a}}=\left(\mathrm{4},\mathrm{2},−\mathrm{1}\right),\:\overset{\rightarrow} {{b}}=\left({m},\mathrm{1},\mathrm{1}\right) \\ $$$$\overset{\rightarrow} {{c}}=\left(\bar {\mathrm{3}}−\mathrm{1},\mathrm{0}\right)\:{are}\:{three}\:{vectors} \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:{m}\:{such} \\ $$$${that}\:\overset{\rightarrow} {{a}},\overset{\rightarrow} {{b}}\:{and}\:\overset{\rightarrow} {{c}}\:{are}\:{coplanar}\:{and} \\ $$$${find}\:\overset{\rightarrow} {{a}}×\left(\overset{\rightarrow} {{b}}×\overset{\rightarrow} {{c}}\right). \\ $$
Answered by mr W last updated on 13/Mar/21
a×c= determinant ((4,2,(−1)),(3,(−1),0))=(−1,−3,−10)  (a×c)∙b=−1×m−3×1−10×1=0  ⇒m=−13  ...
$${a}×{c}=\begin{vmatrix}{\mathrm{4}}&{\mathrm{2}}&{−\mathrm{1}}\\{\mathrm{3}}&{−\mathrm{1}}&{\mathrm{0}}\end{vmatrix}=\left(−\mathrm{1},−\mathrm{3},−\mathrm{10}\right) \\ $$$$\left({a}×{c}\right)\centerdot{b}=−\mathrm{1}×{m}−\mathrm{3}×\mathrm{1}−\mathrm{10}×\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{m}=−\mathrm{13} \\ $$$$… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *