Menu Close

If-a-and-b-are-positive-numbers-what-is-the-value-of-0-e-ax-e-bx-1-e-ax-1-e-bx-dx-




Question Number 7157 by Tawakalitu. last updated on 13/Aug/16
If a and b are positive numbers  what is the value of   ∫_0 ^∞  ((e^(ax)  − e^(bx) )/((1 + e^(ax) )(1 + e^(bx) ))) dx
Ifaandbarepositivenumberswhatisthevalueof0eaxebx(1+eax)(1+ebx)dx
Answered by Yozzia last updated on 14/Aug/16
(1/(1+e^(bx) ))−(1/(1+e^(ax) ))=((e^(ax) −e^(bx) )/((1+e^(ax) )(1+e^(bx) )))   (a,b>0)  I=∫_0 ^∞ ((e^(ax) −e^(bx) )/((1+e^(ax) )(1+e^(bx) )))dx=∫_0 ^∞ [(1/(1+e^(bx) ))−(1/(1+e^(ax) ))]dx  I=lim_(m→∞) [∫_0 ^m (1/(1+e^(bx) ))dx−∫_0 ^m (1/(1+e^(ax) ))dx]  u=e^(bx) ⇒du=be^(bx) dx⇒dx=(1/(bu))du  ∫(1/(bu(1+u)))du=(1/b)∫((1/u)−(1/(1+u)))du  =(1/b)ln(u/(1+u))=(1/b)ln(1/(1+u^(−1) ))=(1/b)ln(1/(1+e^(−bx) ))  ∴I=lim_(m→∞) [(1/b)ln((1/(1+e^(−bx) )))−(1/a)ln((1/(1+e^(−ax) )))]_0 ^m   I=lim_(m→∞) [(1/b)ln(1/(1+e^(−bm) ))−(1/a)ln(1/(1+e^(−am) ))−(1/b)ln(1/(1+1))+(1/a)ln(1/(1+1))]  Since a,b>0, I=(1/b)ln(1/(1+e^(−∞) ))−(1/a)ln(1/(1+e^(−∞) ))+(ln(1/2))((1/a)−(1/b))  I=(1/b)ln(1/(1+0))−(1/a)ln(1/(1+0))+(((a−b)ln2)/(ab))  ∫_0 ^∞ ((e^(ax) −e^(bx) )/((1+e^(ax) )(1+e^(bx) )))dx=(((a−b)ln2)/(ab))
11+ebx11+eax=eaxebx(1+eax)(1+ebx)(a,b>0)I=0eaxebx(1+eax)(1+ebx)dx=0[11+ebx11+eax]dxI=limm[0m11+ebxdx0m11+eaxdx]u=ebxdu=bebxdxdx=1budu1bu(1+u)du=1b(1u11+u)du=1blnu1+u=1bln11+u1=1bln11+ebxI=limm[1bln(11+ebx)1aln(11+eax)]0mI=limm[1bln11+ebm1aln11+eam1bln11+1+1aln11+1]Sincea,b>0,I=1bln11+e1aln11+e+(ln12)(1a1b)I=1bln11+01aln11+0+(ab)ln2ab0eaxebx(1+eax)(1+ebx)dx=(ab)ln2ab
Commented by Tawakalitu. last updated on 14/Aug/16
Thanks so much sir
Thankssomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *