Menu Close

If-A-and-B-are-two-matrices-of-suitable-order-does-there-exist-definition-for-A-B-




Question Number 2546 by Rasheed Soomro last updated on 22/Nov/15
If A and B are two matrices of suitable order  does there exist definition for A^B  ?
IfAandBaretwomatricesofsuitableorderdoesthereexistdefinitionforAB?
Commented by Yozzi last updated on 22/Nov/15
A^B =e^((lnA)B)   if A and B are sqaure  and non−singular.  e^((lnA)B) =1+(lnA)B+((((lnA)B)^2 )/(2!))+((((lnA)B)^3 )/(3!))+...  ∴ A^B =Σ_(r=0) ^∞ (1/(r!))[(lnA)B]^(r )     (Matrix exponential)
AB=e(lnA)BifAandBaresqaureandnonsingular.e(lnA)B=1+(lnA)B+((lnA)B)22!+((lnA)B)33!+AB=r=01r![(lnA)B]r(Matrixexponential)
Commented by Rasheed Soomro last updated on 22/Nov/15
THanKS for Sharing Knowledge.One thing more  I would like to ask how lnA is defined?_(−)   Do A and B need to be of same order?
THanKSforSharingKnowledge.OnethingmoreIwouldliketoaskhowlnAisdefined?DoAandBneedtobeofsameorder?
Commented by Yozzi last updated on 22/Nov/15
If A can be diagonalised,  to find lnA, find the eigenvector   matrix V of the matrix A. With  A^′  as a diaginal matrix of the  eigenvalues of A for its corresponding  V write A^′ =V^(−1) AV    (∗)where V^(−1)  is the  inverse matrix of V.    Suppose A^′ = [((a   0)),((0   b)) ](for example).  Then lnA^′ = [((lna   0)),((0    lnb)) ].   Taking ln on both sides of (∗)  lnA^′ =V^(−1) (lnA)V⇒lnA=V(lnA^′ )V^(−1) .
IfAcanbediagonalised,tofindlnA,findtheeigenvectormatrixVofthematrixA.WithAasadiaginalmatrixoftheeigenvaluesofAforitscorrespondingVwriteA=V1AV()whereV1istheinversematrixofV.SupposeA=[a00b](forexample).ThenlnA=[lna00lnb].Takinglnonbothsidesof()lnA=V1(lnA)VlnA=V(lnA)V1.
Commented by Rasheed Soomro last updated on 22/Nov/15
THANK^(Ssss  )  !
THANKSsss!

Leave a Reply

Your email address will not be published. Required fields are marked *