Question Number 140275 by liberty last updated on 06/May/21
$$\mathrm{If}\:\begin{cases}{\mathrm{a}+\mathrm{b}+\mathrm{c}\:=\:\mathrm{5}}\\{\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}+\frac{\mathrm{1}}{\mathrm{c}}=\frac{\mathrm{1}}{\mathrm{5}}}\end{cases} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \:? \\ $$
Answered by Ar Brandon last updated on 06/May/21
$$\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}+\frac{\mathrm{1}}{\mathrm{c}}=\frac{\mathrm{1}}{\mathrm{5}}\Rightarrow\frac{\mathrm{ab}+\mathrm{bc}+\mathrm{ca}}{\mathrm{abc}}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} −\mathrm{3abc}=\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\left(\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)^{\mathrm{2}} −\mathrm{3ab}−\mathrm{3bc}−\mathrm{3ca}\right) \\ $$$$\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} =\mathrm{5}\left(\mathrm{5}^{\mathrm{2}} −\mathrm{3}\left(\frac{\mathrm{abc}}{\mathrm{5}}\right)\right)+\mathrm{3abc} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{5}^{\mathrm{3}} −\mathrm{3abc}+\mathrm{3abc}=\mathrm{125} \\ $$