Menu Close

if-a-b-c-gt-0-then-9abc-a-3-b-3-c-3-a-2-bc-b-2-ca-c-2-ab-6-




Question Number 144083 by mathdanisur last updated on 21/Jun/21
if  a;b;c>0  then:  ((9abc)/(a^3  + b^3  + c^3 )) + (a^2 /(bc)) + (b^2 /(ca)) + (c^2 /(ab)) ≥ 6
$${if}\:\:{a};{b};{c}>\mathrm{0}\:\:{then}: \\ $$$$\frac{\mathrm{9}{abc}}{{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} }\:+\:\frac{{a}^{\mathrm{2}} }{{bc}}\:+\:\frac{{b}^{\mathrm{2}} }{{ca}}\:+\:\frac{{c}^{\mathrm{2}} }{{ab}}\:\geqslant\:\mathrm{6} \\ $$
Answered by mitica last updated on 21/Jun/21
((9abc)/(a^3 +b^3 +c^3 ))+(a^2 /(bc))+(b^2 /(ac))+(c^2 /(ab))=((9abc)/(a^3 +b^3 +c^3 ))+((a^3 +b^3 +c^3 )/(abc)) ≥^(am−gm)   2(√(((9abc)/(a^3 +b^3 +c^3 ))∙((a^3 +b^3 +c^3 )/(abc))))=2∙3=6
$$\frac{\mathrm{9}{abc}}{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }+\frac{{a}^{\mathrm{2}} }{{bc}}+\frac{{b}^{\mathrm{2}} }{{ac}}+\frac{{c}^{\mathrm{2}} }{{ab}}=\frac{\mathrm{9}{abc}}{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }+\frac{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }{{abc}}\:\overset{{am}−{gm}} {\geqslant} \\ $$$$\mathrm{2}\sqrt{\frac{\mathrm{9}{abc}}{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }\centerdot\frac{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }{{abc}}}=\mathrm{2}\centerdot\mathrm{3}=\mathrm{6} \\ $$
Commented by mathdanisur last updated on 21/Jun/21
alot cool thanks Sir
$${alot}\:{cool}\:{thanks}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *