Menu Close

If-a-b-f-x-dx-a-b-g-x-dx-is-f-x-g-x-true-or-false-




Question Number 131505 by benjo_mathlover last updated on 05/Feb/21
If ∫_a ^b f(x)dx = ∫_a ^b g(x)dx  is f(x)=g(x) ?   true or false?
Ifabf(x)dx=abg(x)dxisf(x)=g(x)?trueorfalse?
Commented by EDWIN88 last updated on 05/Feb/21
If ∫_a ^b f(x)dx = ∫_a ^b g(x)dx , we does not claim that   f(x)=g(x). but ∫_a ^b f(x)dx = ∫_a ^b f(a+b−x)dx  then f(x)=f(a+b−x).
Ifbaf(x)dx=bag(x)dx,wedoesnotclaimthatf(x)=g(x).butbaf(x)dx=baf(a+bx)dxthenf(x)=f(a+bx).
Answered by talminator2856791 last updated on 05/Feb/21
 false
false
Answered by talminator2856791 last updated on 05/Feb/21
 take any two straight lines f(x), g(x) of different gradients.           from point of intersection (m;n), take any real p  such that   ∣f(p)∣, ∣g(p)∣ ≤ ∣n∣,  then          ∫_(m−p) ^( m+p) f(x)dx = ∫_(m−p) ^( m+p) g(x)dx   ⇒ ∫_a ^( b) f(x)dx = ∫_a ^( b) g(x)dx   the assertion that f(x) = g(x) is false, as f(x) and g(x)   can not be the same line if their gradients are different.
takeanytwostraightlinesf(x),g(x)ofdifferentgradients.frompointofintersection(m;n),takeanyrealpsuchthatf(p),g(p)n,thenmpm+pf(x)dx=mpm+pg(x)dxabf(x)dx=abg(x)dxtheassertionthatf(x)=g(x)isfalse,asf(x)andg(x)cannotbethesamelineiftheirgradientsaredifferent.
Commented by benjo_mathlover last updated on 05/Feb/21
give me a counterexample
givemeacounterexample
Answered by TheSupreme last updated on 05/Feb/21
c=((∫_a ^b f(x)dx)/(b−a))  g(x)=c   f(x)=any function  f(x)≠c
c=abf(x)dxbag(x)=cf(x)=anyfunctionf(x)c
Commented by talminator2856791 last updated on 05/Feb/21
 is this assumption?
isthisassumption?
Answered by mr W last updated on 05/Feb/21
Commented by prakash jain last updated on 05/Feb/21
If ∫_a ^b f(x)dx=∫_a ^b g(x)dx  for all a,b ∈ R then f(x)=g(x)  correct?
Ifabf(x)dx=abg(x)dxforalla,bRthenf(x)=g(x)correct?
Commented by mr W last updated on 05/Feb/21
yes, i think.  if ∫_a ^b f(x)dx=∫_a ^b g(x)dx for any a,b∈R  ⇒lim_(b→a) ∫_a ^b f(x)dx=lim_(b→a) ∫_a ^b g(x)dx  ⇒lim_(b→a) f(a)(b−a)=lim_(b→a) g(a)(b−a)  ⇒f(a)=g(a)  ⇒f(x)=g(x)
yes,ithink.ifabf(x)dx=abg(x)dxforanya,bRlimbaabf(x)dx=limbaabg(x)dxlimbaf(a)(ba)=limbag(a)(ba)f(a)=g(a)f(x)=g(x)
Commented by mr W last updated on 05/Feb/21
∫_a ^b f(x)dx=red shaded area   ∫_a ^b g(x)dx=blue shaded area   ∫_a ^b f(x)dx=∫_a ^b g(x)dx means only  that the red shaded area and the  blue shaded area are equal. it doesn′t  mean that f(x)=g(x)!
abf(x)dx=redshadedareaabg(x)dx=blueshadedareaabf(x)dx=abg(x)dxmeansonlythattheredshadedareaandtheblueshadedareaareequal.itdoesntmeanthatf(x)=g(x)!

Leave a Reply

Your email address will not be published. Required fields are marked *