Question Number 140102 by mr W last updated on 04/May/21
$${if}\:{a}_{{n}} −\mathrm{5}{a}_{{n}−\mathrm{1}} +\mathrm{6}{a}_{{n}−\mathrm{2}} =\mathrm{1}\:{and}\: \\ $$$${a}_{\mathrm{0}} =\mathrm{1},\:{a}_{\mathrm{1}} =\mathrm{2}. \\ $$$${find}\:{a}_{{n}} \:{in}\:{terms}\:{of}\:{n}. \\ $$
Commented by som(math1967) last updated on 04/May/21
$${Is}\:{it}\:\frac{\mathrm{3}^{{n}} +\mathrm{1}}{\mathrm{2}}\:{sir}\:? \\ $$
Commented by mr W last updated on 04/May/21
$${yes},\:{correct}. \\ $$
Commented by mr W last updated on 04/May/21
$${not}\:{correct}\:{sir}! \\ $$$${just}\:{check}\:{a}_{\mathrm{2}} ,\:{a}_{\mathrm{3}} .\:{they}\:{should}\:{be}: \\ $$$${a}_{\mathrm{2}} −\mathrm{5}×\mathrm{2}+\mathrm{6}×\mathrm{1}=\mathrm{1}\:\Rightarrow{a}_{\mathrm{2}} =\mathrm{5} \\ $$$${a}_{\mathrm{3}} −\mathrm{5}×\mathrm{5}+\mathrm{6}×\mathrm{2}=\mathrm{1}\:\Rightarrow{a}_{\mathrm{3}} =\mathrm{14} \\ $$
Commented by som(math1967) last updated on 04/May/21
$${a}_{{n}} −\mathrm{5}{a}_{{n}−\mathrm{1}} +\mathrm{6}{a}_{{n}−\mathrm{2}} =\mathrm{1} \\ $$$${n}=\mathrm{2} \\ $$$${a}_{\mathrm{2}} =\mathrm{1}+\mathrm{5}×\mathrm{2}−\mathrm{6}=\mathrm{5} \\ $$$${a}_{\mathrm{3}} =\mathrm{14}….{a}_{\mathrm{4}} =\mathrm{41} \\ $$$${a}_{\mathrm{0}} ,{a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} \\ $$$$\mathrm{1},\left(\mathrm{1}+\mathrm{3}^{\mathrm{0}} \right),\left(\mathrm{1}+\mathrm{3}^{\mathrm{0}} +\mathrm{3}^{\mathrm{1}} \right),\left(\mathrm{1}+\mathrm{3}^{\mathrm{0}} +\mathrm{3}+\mathrm{3}^{\mathrm{2}} \right) \\ $$$$….\underset{{a}_{{n}} } {\underbrace{\left(\mathrm{1}+\mathrm{3}^{\mathrm{0}} +\mathrm{3}+\mathrm{3}^{\mathrm{2}} +….\right)}} \\ $$$${a}_{{n}} =\mathrm{1}+\frac{\mathrm{3}^{{n}} −\mathrm{1}}{\mathrm{3}−\mathrm{1}}=\frac{\mathrm{3}^{{n}} +\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 04/May/21
$${this}\:{method}\:{is}\:{not}\:{general}\:{enough}. \\ $$$${if}\:{i}\:{had}\:{given}\:{a}_{\mathrm{1}} =\mathrm{1},\:{a}_{\mathrm{2}} =\mathrm{3},\:{it}\:{would} \\ $$$${not}\:{be}\:{so}\:{easy}\:{to}\:{get}\:{the}\:{solution}\:{using} \\ $$$${this}\:{method}. \\ $$$${anyway},\:{thanks}\:{alot}! \\ $$
Commented by Dwaipayan Shikari last updated on 04/May/21
$$\Sigma{a}_{{n}} {x}^{{n}} −\mathrm{5}\Sigma{a}_{{n}−\mathrm{1}} {x}^{{n}} +\mathrm{6}\Sigma{a}_{{n}−\mathrm{2}} {x}^{{n}} =\Sigma{x}^{{n}} \\ $$$$\Rightarrow\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{n}+\mathrm{2}} {x}^{{n}} −\mathrm{5}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{n}+\mathrm{1}} {x}^{{n}} +\mathrm{6}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{n}} {x}^{{n}} =\Sigma{x}^{{n}} \\ $$$$\Rightarrow\left({a}_{\mathrm{2}} {x}+{a}_{\mathrm{3}} {x}^{\mathrm{2}} +..\right)−\mathrm{5}\left({a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +…\right)+\mathrm{6}\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +…\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{x}}\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +…\right)−\frac{{a}_{\mathrm{0}} }{{x}}−{a}_{\mathrm{1}} +\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}^{\mathrm{2}} +..\right)+\mathrm{5}{a}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{x}}\Lambda\left({x}\right)−\frac{\mathrm{1}}{{x}}−\mathrm{2}+\Lambda\left({x}\right)+\mathrm{5}=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\Rightarrow\Lambda\left({x}\right)\left(\frac{{x}+\mathrm{1}}{{x}}\right)=\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{1}−{x}}−\mathrm{3} \\ $$$$\Rightarrow\Lambda\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}}+\frac{{x}}{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)}−\frac{\mathrm{3}{x}}{\left(\mathrm{1}+{x}\right)}.. \\ $$$${We}\:{have}\:{to}\:{turn}\:{it}\:{in}\:{a}\:{Taylor}\:{series} \\ $$
Commented by mr W last updated on 04/May/21
$${thanks}\:{to}\:{all}\:{for}\:{trying}\:{different}\:{ways}! \\ $$
Answered by mr W last updated on 04/May/21
$${such}\:{that}\:{it}'{s}\:{not}\:{too}\:{special},\:{i}'{ll} \\ $$$${change}\:{the}\:{condition}\:{to} \\ $$$${a}_{\mathrm{0}} =\mathrm{1},\:{a}_{\mathrm{1}} =\mathrm{3}. \\ $$$$ \\ $$$${a}_{{n}} −\mathrm{5}{a}_{{n}−\mathrm{1}} +\mathrm{6}{a}_{{n}−\mathrm{2}} =\mathrm{1} \\ $$$${at}\:{first}\:{we}\:{shall}\:{try}\:{to}\:{eliminate}\:{the} \\ $$$${term}\:\mathrm{1}\:{on}\:{the}\:{RHS}.\: \\ $$$${let}\:{a}_{{n}} ={b}_{{n}} +{k},\:{k}\:{is}\:{a}\:{constant}. \\ $$$${then}\:{we}\:{will}\:{get} \\ $$$${b}_{{n}} +{k}−\mathrm{5}\left({b}_{{n}−\mathrm{1}} +{k}\right)+\mathrm{6}\left({b}_{{n}−\mathrm{2}} +{k}\right)=\mathrm{1} \\ $$$${b}_{{n}} −\mathrm{5}{b}_{{n}−\mathrm{1}} +\mathrm{6}{b}_{{n}−\mathrm{2}} =\mathrm{1}−\mathrm{2}{k} \\ $$$${we}\:{set}\:\mathrm{1}−\mathrm{2}{k}=\mathrm{0},\:{i}.{e}.\:{k}=\frac{\mathrm{1}}{\mathrm{2}},\:{then} \\ $$$${b}_{{n}} −\mathrm{5}{b}_{{n}−\mathrm{1}} +\mathrm{6}{b}_{{n}−\mathrm{2}} =\mathrm{0} \\ $$$${let}\:{b}_{{n}} ={Ap}^{{n}} \\ $$$${Ap}^{{n}} −\mathrm{5}{Ap}^{{n}−\mathrm{1}} +\mathrm{6}{Ap}^{{n}−\mathrm{2}} =\mathrm{0} \\ $$$${Ap}^{{n}−\mathrm{2}} \left({p}^{\mathrm{2}} −\mathrm{5}{p}+\mathrm{6}\right)=\mathrm{0} \\ $$$${since}\:{A}\neq\mathrm{0},\:{p}\neq\mathrm{0}, \\ $$$$\Rightarrow{p}^{\mathrm{2}} −\mathrm{5}{p}+\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow\left({p}−\mathrm{2}\right)\left({p}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{p}=\mathrm{2}\:{or}\:\mathrm{3} \\ $$$${b}_{{n}} \:{can}\:{be}\:{generally}\:{expressed}\:{as} \\ $$$${b}_{{n}} ={A}\mathrm{2}^{{n}} +{B}\mathrm{3}^{{n}} \\ $$$${with}\:{A},{B}\:={constants} \\ $$$$\Rightarrow{a}_{{n}} ={A}\mathrm{2}^{{n}} +{B}\mathrm{3}^{{n}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${a}_{\mathrm{0}} ={A}+{B}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{1}\:\left({given}\right)\:\:\:\:…\left({i}\right) \\ $$$${a}_{\mathrm{1}} ={A}×\mathrm{2}+{B}×\mathrm{3}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{3}\:\left({given}\right)\:\:\:…\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{get} \\ $$$$\Rightarrow{A}=−\mathrm{1} \\ $$$$\Rightarrow{B}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{a}_{{n}} =−\mathrm{2}^{{n}} +\frac{\mathrm{3}}{\mathrm{2}}×\mathrm{3}^{{n}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{a}_{{n}} =\frac{\mathrm{3}^{{n}+\mathrm{1}} +\mathrm{1}}{\mathrm{2}}−\mathrm{2}^{{n}} \\ $$$$\blacksquare \\ $$
Commented by BHOOPENDRA last updated on 04/May/21
$${thanks}\:{alot}\:{sir} \\ $$
Answered by floor(10²Eta[1]) last updated on 05/May/21
$$\mathrm{a}_{\mathrm{n}} =\left(\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{10}}\right)\left(\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{n}} +\left(\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{10}}\right)\left(\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{n}} \\ $$
Commented by mr W last updated on 05/May/21
$${wrong}. \\ $$$${a}_{\mathrm{2}} =\mathrm{15},\:{but}\:{should}\:{be}\:\mathrm{14}. \\ $$
Commented by floor(10²Eta[1]) last updated on 05/May/21
$$\mathrm{wrong}. \\ $$$$\mathrm{a}_{\mathrm{2}} −\mathrm{5a}_{\mathrm{1}} +\mathrm{6a}_{\mathrm{0}} =\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{2}} =\mathrm{5} \\ $$
Commented by mr W last updated on 05/May/21
$${a}\:{typo}.\:{i}\:{meant}\:{a}_{\mathrm{3}} \:{should}\:{be}\:\mathrm{14},\:{not}\:\mathrm{15}. \\ $$
Commented by floor(10²Eta[1]) last updated on 05/May/21
$$\mathrm{you}'\mathrm{re}\:\mathrm{right}\: \\ $$
Answered by floor(10²Eta[1]) last updated on 05/May/21
$$\mathrm{a}_{\mathrm{n}} =\mathrm{x}_{\mathrm{n}} +\mathrm{y}_{\mathrm{n}} \\ $$$$\mathrm{a}_{\mathrm{n}} =\mathrm{5a}_{\mathrm{n}−\mathrm{1}} −\mathrm{6a}_{\mathrm{n}−\mathrm{2}} +\mathrm{1} \\ $$$$\mathrm{x}_{\mathrm{n}} =\mathrm{5x}_{\mathrm{n}} −\mathrm{6x}_{\mathrm{n}} +\mathrm{1} \\ $$$$\mathrm{x}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{y}_{\mathrm{n}} =\mathrm{5y}_{\mathrm{n}−\mathrm{1}} −\mathrm{6y}_{\mathrm{n}−\mathrm{2}} \\ $$$$\mathrm{y}^{\mathrm{2}} −\mathrm{5y}+\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{y}_{\mathrm{1}} =\mathrm{2},\:\mathrm{y}_{\mathrm{2}} =\mathrm{3} \\ $$$$\mathrm{y}_{\mathrm{n}} =\mathrm{c}_{\mathrm{1}} \mathrm{2}^{\mathrm{n}} +\mathrm{c}_{\mathrm{2}} \mathrm{3}^{\mathrm{n}} \\ $$$$\mathrm{y}_{\mathrm{0}} =\mathrm{c}_{\mathrm{1}} +\mathrm{c}_{\mathrm{2}} =\mathrm{a}_{\mathrm{0}} −\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{y}_{\mathrm{1}} =\mathrm{2c}_{\mathrm{1}} +\mathrm{3c}_{\mathrm{2}} =\mathrm{a}_{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{c}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{c}_{\mathrm{1}} \\ $$$$\mathrm{2c}_{\mathrm{1}} +\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{3c}_{\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}\Rightarrow\mathrm{c}_{\mathrm{1}} =\mathrm{0}\Rightarrow\mathrm{c}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{y}_{\mathrm{n}} =\frac{\mathrm{3}^{\mathrm{n}} }{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{3}^{\mathrm{n}} +\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 05/May/21
$${thanks}\:{sir}! \\ $$