Menu Close

if-a-n-5a-n-1-6a-n-2-1-and-a-0-1-a-1-2-find-a-n-in-terms-of-n-




Question Number 140102 by mr W last updated on 04/May/21
if a_n −5a_(n−1) +6a_(n−2) =1 and   a_0 =1, a_1 =2.  find a_n  in terms of n.
ifan5an1+6an2=1anda0=1,a1=2.findanintermsofn.
Commented by som(math1967) last updated on 04/May/21
Is it ((3^n +1)/2) sir ?
Isit3n+12sir?
Commented by mr W last updated on 04/May/21
yes, correct.
yes,correct.
Commented by mr W last updated on 04/May/21
not correct sir!  just check a_2 , a_3 . they should be:  a_2 −5×2+6×1=1 ⇒a_2 =5  a_3 −5×5+6×2=1 ⇒a_3 =14
notcorrectsir!justchecka2,a3.theyshouldbe:a25×2+6×1=1a2=5a35×5+6×2=1a3=14
Commented by som(math1967) last updated on 04/May/21
a_n −5a_(n−1) +6a_(n−2) =1  n=2  a_2 =1+5×2−6=5  a_3 =14....a_4 =41  a_0 ,a_1 ,a_2 ,a_3   1,(1+3^0 ),(1+3^0 +3^1 ),(1+3^0 +3+3^2 )  ....(1+3^0 +3+3^2 +....)_(a_n )   a_n =1+((3^n −1)/(3−1))=((3^n +1)/2)
an5an1+6an2=1n=2a2=1+5×26=5a3=14.a4=41a0,a1,a2,a31,(1+30),(1+30+31),(1+30+3+32).(1+30+3+32+.)anan=1+3n131=3n+12
Commented by mr W last updated on 04/May/21
this method is not general enough.  if i had given a_1 =1, a_2 =3, it would  not be so easy to get the solution using  this method.  anyway, thanks alot!
thismethodisnotgeneralenough.ifihadgivena1=1,a2=3,itwouldnotbesoeasytogetthesolutionusingthismethod.anyway,thanksalot!
Commented by Dwaipayan Shikari last updated on 04/May/21
Σa_n x^n −5Σa_(n−1) x^n +6Σa_(n−2) x^n =Σx^n   ⇒Σ_(n=0) ^∞ a_(n+2) x^n −5Σ_(n=0) ^∞ a_(n+1) x^n +6Σ_(n=0) ^∞ a_n x^n =Σx^n   ⇒(a_2 x+a_3 x^2 +..)−5(a_1 x+a_2 x^2 +...)+6(a_0 +a_1 x+a_2 x^2 +...)=(1/(1−x))  ⇒(1/x)(a_0 +a_1 x+a_2 x^2 +...)−(a_0 /x)−a_1 +(a_0 +a_1 x^2 +..)+5a_0 =(1/(1−x))  ⇒(1/x)Λ(x)−(1/x)−2+Λ(x)+5=(1/(1−x))  ⇒Λ(x)(((x+1)/x))=(1/x)+(1/(1−x))−3  ⇒Λ(x)=(1/(1+x))+(x/((1−x)(1+x)))−((3x)/((1+x)))..  We have to turn it in a Taylor series
Σanxn5Σan1xn+6Σan2xn=Σxnn=0an+2xn5n=0an+1xn+6n=0anxn=Σxn(a2x+a3x2+..)5(a1x+a2x2+)+6(a0+a1x+a2x2+)=11x1x(a0+a1x+a2x2+)a0xa1+(a0+a1x2+..)+5a0=11x1xΛ(x)1x2+Λ(x)+5=11xΛ(x)(x+1x)=1x+11x3Λ(x)=11+x+x(1x)(1+x)3x(1+x)..WehavetoturnitinaTaylorseries
Commented by mr W last updated on 04/May/21
thanks to all for trying different ways!
thankstoallfortryingdifferentways!
Answered by mr W last updated on 04/May/21
such that it′s not too special, i′ll  change the condition to  a_0 =1, a_1 =3.    a_n −5a_(n−1) +6a_(n−2) =1  at first we shall try to eliminate the  term 1 on the RHS.   let a_n =b_n +k, k is a constant.  then we will get  b_n +k−5(b_(n−1) +k)+6(b_(n−2) +k)=1  b_n −5b_(n−1) +6b_(n−2) =1−2k  we set 1−2k=0, i.e. k=(1/2), then  b_n −5b_(n−1) +6b_(n−2) =0  let b_n =Ap^n   Ap^n −5Ap^(n−1) +6Ap^(n−2) =0  Ap^(n−2) (p^2 −5p+6)=0  since A≠0, p≠0,  ⇒p^2 −5p+6=0  ⇒(p−2)(p−3)=0  ⇒p=2 or 3  b_n  can be generally expressed as  b_n =A2^n +B3^n   with A,B =constants  ⇒a_n =A2^n +B3^n +(1/2)  a_0 =A+B+(1/2)=1 (given)    ...(i)  a_1 =A×2+B×3+(1/2)=3 (given)   ...(ii)  from (i) and (ii) we get  ⇒A=−1  ⇒B=(3/2)  ⇒a_n =−2^n +(3/2)×3^n +(1/2)  ⇒a_n =((3^(n+1) +1)/2)−2^n   ■
suchthatitsnottoospecial,illchangetheconditiontoa0=1,a1=3.an5an1+6an2=1atfirstweshalltrytoeliminatetheterm1ontheRHS.letan=bn+k,kisaconstant.thenwewillgetbn+k5(bn1+k)+6(bn2+k)=1bn5bn1+6bn2=12kweset12k=0,i.e.k=12,thenbn5bn1+6bn2=0letbn=ApnApn5Apn1+6Apn2=0Apn2(p25p+6)=0sinceA0,p0,p25p+6=0(p2)(p3)=0p=2or3bncanbegenerallyexpressedasbn=A2n+B3nwithA,B=constantsan=A2n+B3n+12a0=A+B+12=1(given)(i)a1=A×2+B×3+12=3(given)(ii)from(i)and(ii)wegetA=1B=32an=2n+32×3n+12an=3n+1+122n◼
Commented by BHOOPENDRA last updated on 04/May/21
thanks alot sir
thanksalotsir
Answered by floor(10²Eta[1]) last updated on 05/May/21
a_n =(((5−(√5))/(10)))(((5+(√5))/2))^n +(((5+(√5))/(10)))(((5−(√5))/2))^n
an=(5510)(5+52)n+(5+510)(552)n
Commented by mr W last updated on 05/May/21
wrong.  a_2 =15, but should be 14.
wrong.a2=15,butshouldbe14.
Commented by floor(10²Eta[1]) last updated on 05/May/21
wrong.  a_2 −5a_1 +6a_0 =1  a_2 =5
wrong.a25a1+6a0=1a2=5
Commented by mr W last updated on 05/May/21
a typo. i meant a_3  should be 14, not 15.
atypo.imeanta3shouldbe14,not15.
Commented by floor(10²Eta[1]) last updated on 05/May/21
you′re right
youreright
Answered by floor(10²Eta[1]) last updated on 05/May/21
a_n =x_n +y_n   a_n =5a_(n−1) −6a_(n−2) +1  x_n =5x_n −6x_n +1  x_n =(1/2)  y_n =5y_(n−1) −6y_(n−2)   y^2 −5y+6=0  y_1 =2, y_2 =3  y_n =c_1 2^n +c_2 3^n   y_0 =c_1 +c_2 =a_0 −(1/2)=(1/2)  y_1 =2c_1 +3c_2 =a_1 −(1/2)=(3/2)  c_2 =(1/2)−c_1   2c_1 +(3/2)−3c_1 =(3/2)⇒c_1 =0⇒c_2 =(1/2)  y_n =(3^n /2)  ⇒a_n =((3^n +1)/2)
an=xn+ynan=5an16an2+1xn=5xn6xn+1xn=12yn=5yn16yn2y25y+6=0y1=2,y2=3yn=c12n+c23ny0=c1+c2=a012=12y1=2c1+3c2=a112=32c2=12c12c1+323c1=32c1=0c2=12yn=3n2an=3n+12
Commented by mr W last updated on 05/May/21
thanks sir!
thankssir!

Leave a Reply

Your email address will not be published. Required fields are marked *