Menu Close

if-a-n-and-b-n-are-two-real-sequence-such-that-e-a-n-a-n-e-b-n-a-proof-that-a-n-gt-0-b-n-gt-0-b-if-a-n-gt-0-n-N-if-n-0-a-n-converge-then-n-0-b-n-a-n-converge-




Question Number 657 by 123456 last updated on 21/Feb/15
if (a_n ) and (b_n ) are two real sequence  such that e^a_n  =a_n +e^b_n    a) proof that a_n >0⇒b_n >0  b) if a_n >0∀n∈N if Σ_(n=0) ^(+∞) a_n  converge then  Σ_(n=0) ^(+∞) (b_n /a_n ) converge
if(an)and(bn)aretworealsequencesuchthatean=an+ebna)proofthatan>0bn>0b)ifan>0nNif+n=0anconvergethen+n=0bnanconverge
Answered by prakash jain last updated on 20/Feb/15
e^a_n  =1+a_n +(a_n ^2 /(2!))+...   a_n >0⇒e^b_n  =e^a_n  −a_n >1⇒b_n >0
ean=1+an+an22!+an>0ebn=eanan>1bn>0

Leave a Reply

Your email address will not be published. Required fields are marked *