Menu Close

If-a-n-is-sum-of-the-all-primitive-n-th-root-of-unity-Does-n-1-a-n-converge-An-n-th-root-of-unity-say-z-is-primitive-if-it-is-not-k-th-root-of-unity-where-k-lt-n-or-z-n-1-and-z




Question Number 3650 by prakash jain last updated on 18/Dec/15
If a_n  is sum of the all primitive n^(th)  root of  unity.  Does Σ_(n=1) ^∞ a_n  converge?  An n^(th)  root of unity, say z, is primitive if it is not  k^(th)  root of unity where k<n.  or z^n =1 and z^k ≠1 (k=1,2,3,..,n−1)  a_1 =1  a_2 =−1  (2^(nd)  root of unity are 1 and −1, 1 is not                primitive)
Ifanissumoftheallprimitiventhrootofunity.Doesn=1anconverge?Annthrootofunity,sayz,isprimitiveifitisnotkthrootofunitywherek<n.orzn=1andzk1(k=1,2,3,..,n1)a1=1a2=1(2ndrootofunityare1and1,1isnotprimitive)
Answered by Yozzii last updated on 18/Dec/15
Let p(n) be the primitive roots of the  equation z^n =1 and a_n =Σp(n).  n=1⇒z=1⇒p(1)=1⇒a_1 =1.  n=2⇒z^2 =1⇒z=±1⇒p(2)=−1⇒a_2 =−1.  n=3⇒z^3 =1=e^(2πir)  (−1≤r≤1)   ⇒z=e^((2πir)/3) ⇒p(3)=e^(±((2πi)/3)) ⇒a_3 =2cos((2π)/3)=−1  n=4⇒z^4 =1⇒z=±1,±i⇒p(4)=±i⇒a_4 =0  n=5⇒z^5 =e^(2πir)  (−2≤r≤2)  ⇒z=e^((2πir)/5) =1,e^(±((2πi)/5)) ,e^(±((4πi)/5)) ⇒p(5)=e^(±((2πi)/5)) ,e^(±((4πi)/5))   ⇒a_5 =2(cos((2π)/5)+cos((4π)/5))  a_5 =2{2cos(((4π+2π)/5)/2)cos(((4π−2π)/5)/2)}  a_5 =4cos((3π)/5)cos(π/5)=−1  n=6⇒z^6 =e^(2πir)  (−2≤r≤3)  z=e^((πir)/3) ⇒z=±1,e^(±((πi)/3)) ,e^(±((2πi)/3)) ⇒p(6)=e^(±((πi)/3))   ⇒a_6 =2cos(π/3)=1  n=7⇒z^7 =e^(2πir)  (−3≤r≤3)  ⇒z=e^((2πir)/7) ⇒z=1,e^((±2πi)/7) ,e^((±4πi)/7) ,e^((±6πi)/7)   ⇒a_7 =2(cos((2π)/7)+cos((4π)/7)+cos((6π)/7))=−1  n=8⇒z^8 =e^(2πir) ⇒z=e^((πir)/4) (−3≤r≤4)  ⇒z=±1,e^(±((3πi)/4)) ,±i,e^(±((πi)/4))   ⇒a_8 =2(cos((3π)/4)+cos(π/4))=0.  n=9⇒z=e^((2πir)/9)  (−4≤r≤4)  ⇒z=1,e^(±((2πi)/9)) ,e^(±((4πi)/9)) ,e^(±((2πi)/3)) ,e^(±((8πi)/9))   ⇒a_9 =2(cos((2π)/9)+cos((4π)/9)+cos((8π)/9))=0  n=10⇒z=e^((πir)/5)  (−4≤r≤5)  ⇒z=±1,e^(±((πi)/5)) ,e^(±((2πi)/5)) ,e^(±((3πi)/5)) ,e^(±((4πi)/5))   ⇒a_(10) =2(cos(π/5)+cos((3π)/5))=1    I conject that for n being prime,  a_n ≠0, so that lim_((n∈P)→∞) a_n ≠0⇒Σa_n  does  not converge.     Suppose that n∈P−{2} and z^n =e^(2πir)  with  r=0,1,2,...,n−1. Then, z=e^((2πir)/n) .  n∈P−{2}⇒ (r/n) never reduces nor vanishes  for all r≠0. If r=0 we obtain the non−primitive  root z=1. Otherwise, all arguments   ((2πr)/n) are unique. In adding all of the  primitive roots however, the imaginary  parts vanish for there are an even   number of roots (n−1 ∵ n∈O^+ ) and half of these  roots are complex conjugates of the remaining  roots.  ∴ a_n =2Σ_(r=1) ^((n−1)/2) cos((2πr)/n) (n∈P−{2})  ⇒lim_((n∈P−{2})→∞) a_n ≠0  If n=2, a_2 =−1≠0. So lim_((n∈P)→∞) a_n ≠0.  There exist infinitely many primes   with P⊂N, so a_n  always exists for  n∈P⊂N.  Calculations project that a_n =−1  for all n∈P. It has been proven that  a_n =−1 ∀n∈P indeed in the comments   below.
Letp(n)betheprimitiverootsoftheequationzn=1andan=Σp(n).n=1z=1p(1)=1a1=1.n=2z2=1z=±1p(2)=1a2=1.n=3z3=1=e2πir(1r1)z=e2πir3p(3)=e±2πi3a3=2cos2π3=1n=4z4=1z=±1,±ip(4)=±ia4=0n=5z5=e2πir(2r2)z=e2πir5=1,e±2πi5,e±4πi5p(5)=e±2πi5,e±4πi5a5=2(cos2π5+cos4π5)a5=2{2cos4π+2π52cos4π2π52}a5=4cos3π5cosπ5=1n=6z6=e2πir(2r3)z=eπir3z=±1,e±πi3,e±2πi3p(6)=e±πi3a6=2cosπ3=1n=7z7=e2πir(3r3)z=e2πir7z=1,e±2πi7,e±4πi7,e±6πi7a7=2(cos2π7+cos4π7+cos6π7)=1n=8z8=e2πirz=eπir4(3r4)z=±1,e±3πi4,±i,e±πi4a8=2(cos3π4+cosπ4)=0.n=9z=e2πir9(4r4)z=1,e±2πi9,e±4πi9,e±2πi3,e±8πi9a9=2(cos2π9+cos4π9+cos8π9)=0n=10z=eπir5(4r5)z=±1,e±πi5,e±2πi5,e±3πi5,e±4πi5a10=2(cosπ5+cos3π5)=1Iconjectthatfornbeingprime,an0,sothatlim(nP)an0Σandoesnotconverge.SupposethatnP{2}andzn=e2πirwithr=0,1,2,,n1.Then,z=e2πirn.nP{2}rnneverreducesnorvanishesforallr0.Ifr=0weobtainthenonprimitiverootz=1.Otherwise,allarguments2πrnareunique.Inaddingalloftheprimitiverootshowever,theimaginarypartsvanishforthereareanevennumberofroots(n1nO+)andhalfoftheserootsarecomplexconjugatesoftheremainingroots.an=2n12r=1cos2πrn(nP{2})lim(nP{2})an0Ifn=2,a2=10.Solim(nP)an0.ThereexistinfinitelymanyprimeswithPN,soanalwaysexistsfornPN.Calculationsprojectthatan=1forallnP.Ithasbeenproventhatan=1nPindeedinthecommentsbelow.
Commented by prakash jain last updated on 18/Dec/15
Thanks for detailed answer.
Thanksfordetailedanswer.
Commented by Yozzii last updated on 18/Dec/15
S(n)=Σ_(r=1) ^n cosrθ     S(n)sin0.5θ=Σ_(r=1) ^n cosrθsin0.5θ   (θ≠2nπ)    2cosrθsin0.5θ=sin(r+0.5)θ−sin(r−0.5)θ  ∴S(n)sin0.5θ=(1/2){sin1.5θ−sin0.5θ  +sin2.5θ−sin1.5θ+sin3.5θ−sin2.5θ  +...+sin(n−2.5)θ−sin(n−3.5)θ  +sin(n−1.5)θ−sin(n−2.5)θ  +sin(n−0.5)θ−sin(n−1.5)θ  +sin(n+0.5)θ−sin(n−0.5)θ}  S(n)=((sin(n+0.5)θ−sin0.5θ)/(2sin0.5θ))  S(n)=((2cos(((n+0.5)θ+0.5θ)/2)sin(((n+0.5)θ−0.5θ)/2))/(2sin0.5θ))  S(n)=((cos((n+1)/2)θsin((nθ)/2))/(sin0.5θ))  n∈P−{2}⇒ ((n−1)/2)∈Z^+   so ((n−1)/2) can be safely substituted for n in S(n).    ∴ S(((n−1)/2))=((cos(((n/2)−(1/2)+1)/2)θsin((n−1)/4)θ)/(sin0.5θ))  S(((n−1)/2))=((cos((n+1)/4)θsin((n−1)/4)θ)/(2cos(θ/4)sin(θ/4)))    Now let θ=((2π)/n).  S(0.5(n−1))=((cos((n+1)/(2n))πsin((n−1)/(2n))π)/(2cos(π/(2n))sin(π/(2n))))  S((1/2)(n−1))=((cos((π/2)+(π/(2n)))sin((π/2)−(π/(2n))))/(2cos(π/(2n))sin(π/(2n))))  cos(0.5π+α)=0−sin0.5πsinα  and sin(0.5π−α)=cosα  ⇒S((1/2)(n−1))=−0.5  ⇒a_n =2×(−0.5)=−1 ∀n∈P−{2}.                  o
S(n)=nr=1cosrθS(n)sin0.5θ=nr=1cosrθsin0.5θ(θ2nπ)2cosrθsin0.5θ=sin(r+0.5)θsin(r0.5)θS(n)sin0.5θ=12{sin1.5θsin0.5θ+sin2.5θsin1.5θ+sin3.5θsin2.5θ++sin(n2.5)θsin(n3.5)θ+sin(n1.5)θsin(n2.5)θ+sin(n0.5)θsin(n1.5)θ+sin(n+0.5)θsin(n0.5)θ}S(n)=sin(n+0.5)θsin0.5θ2sin0.5θS(n)=2cos(n+0.5)θ+0.5θ2sin(n+0.5)θ0.5θ22sin0.5θS(n)=cosn+12θsinnθ2sin0.5θnP{2}n12Z+son12canbesafelysubstitutedforninS(n).S(n12)=cosn212+12θsinn14θsin0.5θS(n12)=cosn+14θsinn14θ2cosθ4sinθ4Nowletθ=2πn.S(0.5(n1))=cosn+12nπsinn12nπ2cosπ2nsinπ2nS(12(n1))=cos(π2+π2n)sin(π2π2n)2cosπ2nsinπ2ncos(0.5π+α)=0sin0.5πsinαandsin(0.5πα)=cosαS(12(n1))=0.5an=2×(0.5)=1nP{2}.o
Commented by prakash jain last updated on 18/Dec/15
p>2 prime−(so odd)  x^p −1=0  1+x+x^2 +..+x^(p−1) =0 (1)  All roots of (1) are primitive  (x−r_1 )(x−r_2 )(x−r_3 )...(x−r_(p−1) )=0  x^(p−1) −(r_1 +r_2 +..+r_(p−1) )x^(p−2) +....+(−1)^(p−1) Π_(i=1) ^(p−1) r_i  =0  so  r_1 +r_2 +..+r_(p−1) =−1  Same as what you stated that sum of primitive  roots =−1 for n∈P.
p>2prime(soodd)xp1=01+x+x2+..+xp1=0(1)Allrootsof(1)areprimitive(xr1)(xr2)(xr3)(xrp1)=0xp1(r1+r2+..+rp1)xp2+.+(1)p1p1i=1ri=0sor1+r2+..+rp1=1Sameaswhatyoustatedthatsumofprimitiveroots=1fornP.
Commented by Yozzii last updated on 18/Dec/15
Ahh. Nicely .
Ahh.Nicely.

Leave a Reply

Your email address will not be published. Required fields are marked *