Question Number 75445 by vishalbhardwaj last updated on 11/Dec/19
$$\mathrm{If}\:\mathrm{a}\:\mathrm{variable}\:\mathrm{line}\:\mathrm{in}\:\mathrm{two}\:\mathrm{adjacent} \\ $$$$\mathrm{positions}\:\mathrm{has}\:\mathrm{direction}\:\mathrm{cosines} \\ $$$${l},{m},\:{n}\:\mathrm{and}\:{l}+\delta{l},\:{m}+\delta{m},\:{n}+\delta{n} \\ $$$$,\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{small}\:\mathrm{angle}\:\delta\theta\: \\ $$$$\mathrm{b}/\mathrm{w}\:\mathrm{the}\:\mathrm{two}\:\mathrm{positions}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$$\delta\theta^{\mathrm{2}} \:=\:\delta{l}^{\mathrm{2}} \:+\:\delta{m}^{\mathrm{2}} \:+\:\delta{n}^{\mathrm{2}} \:\:?? \\ $$
Answered by mr W last updated on 11/Dec/19
$${x}_{\mathrm{1}} ={l} \\ $$$${y}_{\mathrm{1}} ={m} \\ $$$${z}_{\mathrm{1}} ={n} \\ $$$${x}_{\mathrm{2}} ={l}+\delta{l} \\ $$$${y}_{\mathrm{2}} ={m}+\delta{m} \\ $$$${z}_{\mathrm{2}} ={n}+\delta{n} \\ $$$$\left(\Delta{l}\right)^{\mathrm{2}} =\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} +\left(\Delta{z}\right)^{\mathrm{2}} \\ $$$$=\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({y}_{\mathrm{2}} −{y}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({z}_{\mathrm{2}} −{z}_{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$=\left(\delta{l}\right)^{\mathrm{2}} +\left(\delta{m}\right)^{\mathrm{2}} +\left(\delta{n}\right)^{\mathrm{2}} \:\:\:…\left({i}\right) \\ $$$$ \\ $$$$\left(\Delta{l}\right)^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} −\mathrm{2}×\mathrm{1}×\mathrm{1}×\mathrm{cos}\:\left(\delta\theta\right) \\ $$$$=\mathrm{2}−\mathrm{2}\:\left[\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\left(\frac{\delta\theta}{\mathrm{2}}\right)\right] \\ $$$$=\mathrm{4}\:\left[\mathrm{sin}\:\frac{\delta\theta}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$$\approx\mathrm{4}\:\left[\frac{\delta\theta}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$$=\left(\delta\theta\right)^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$$ \\ $$$$\Rightarrow\left(\delta\theta\right)^{\mathrm{2}} =\left(\delta{l}\right)^{\mathrm{2}} +\left(\delta{m}\right)^{\mathrm{2}} +\left(\delta{n}\right)^{\mathrm{2}} \\ $$
Commented by mr W last updated on 11/Dec/19
Commented by mr W last updated on 11/Dec/19
$${P}_{\mathrm{1}} \left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} ,{z}_{\mathrm{1}} \right) \\ $$$${P}_{\mathrm{2}} \left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} ,{z}_{\mathrm{2}} \right) \\ $$$${let}\:{OP}_{\mathrm{1}} ={OP}_{\mathrm{2}} =\mathrm{1} \\ $$$${x}_{\mathrm{1}} =\mathrm{1}\:\mathrm{cos}\:\alpha={l} \\ $$$${y}_{\mathrm{1}} =\mathrm{1}\:\mathrm{cos}\:\beta={m} \\ $$$${z}_{\mathrm{1}} =\mathrm{1}\:\mathrm{cos}\:\gamma={n} \\ $$$${similarly} \\ $$$${x}_{\mathrm{2}} ={l}+\delta{l} \\ $$$${y}_{\mathrm{2}} ={m}+\delta{m} \\ $$$${z}_{\mathrm{2}} ={n}+\delta{n} \\ $$$${let}\:\Delta{l}={P}_{\mathrm{1}} {P}_{\mathrm{2}} \\ $$$$\Delta{l}=\sqrt{\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({y}_{\mathrm{2}} −{y}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)^{\mathrm{2}} } \\ $$$$=\sqrt{\left(\delta{l}\right)^{\mathrm{2}} +\left(\delta{m}\right)^{\mathrm{2}} +\left(\delta{n}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\left(\Delta{l}\right)^{\mathrm{2}} =\left(\delta{l}\right)^{\mathrm{2}} +\left(\delta{m}\right)^{\mathrm{2}} +\left(\delta{n}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${on}\:{the}\:{other}\:{side}, \\ $$$$\left({P}_{\mathrm{1}} {P}_{\mathrm{2}} \right)^{\mathrm{2}} =\left({OP}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({OP}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left({OP}_{\mathrm{1}} \right)\left({OP}_{\mathrm{2}} \right)\mathrm{cos}\:\angle{P}_{\mathrm{1}} {OP}_{\mathrm{2}} \\ $$$${i}.{e}. \\ $$$$\left(\Delta{l}\right)^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} −\mathrm{2}×\mathrm{1}×\mathrm{1}\:\mathrm{cos}\:\left(\delta\theta\right) \\ $$$$=\mathrm{2}−\mathrm{2}\:\mathrm{cos}\:\left(\delta\theta\right) \\ $$$$=\mathrm{2}−\mathrm{2}\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\delta\theta}{\mathrm{2}}\right) \\ $$$$=\mathrm{4}\:\left(\mathrm{sin}\:\frac{\delta\theta}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\approx\mathrm{4}\:\left(\frac{\delta\theta}{\mathrm{2}}\right)^{\mathrm{2}} \:\:{since}\:\delta\theta\:{is}\:{small},\:\mathrm{sin}\:\frac{\delta\theta}{\mathrm{2}}\approx\frac{\delta\theta}{\mathrm{2}} \\ $$$$=\left(\delta\theta\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow\left(\delta\theta\right)^{\mathrm{2}} =\left(\delta{l}\right)^{\mathrm{2}} +\left(\delta{m}\right)^{\mathrm{2}} +\left(\delta{n}\right)^{\mathrm{2}} \\ $$
Commented by vishalbhardwaj last updated on 11/Dec/19
$$\mathrm{sir}\:\mathrm{please}\:\mathrm{explain}\:\mathrm{in}\:\mathrm{detail} \\ $$
Commented by peter frank last updated on 11/Dec/19
$${thank}\:{you} \\ $$
Commented by vishalbhardwaj last updated on 11/Dec/19
$$\mathrm{but}\:\mathrm{sir}\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{given}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{line}\:\mathrm{is}\:\mathrm{unit} \\ $$
Commented by vishalbhardwaj last updated on 12/Dec/19
$$\mathrm{And}\:\mathrm{sir}\:\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{case} \\ $$$$\mathrm{because}\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{given}\:\mathrm{that}\: \\ $$$$\mathrm{lines}\:\mathrm{are}\:\mathrm{started}\:\mathrm{from}\:\mathrm{origin},\: \\ $$$$\mathrm{Infact}\:\mathrm{they}\:\mathrm{can}\:\mathrm{be}\:\mathrm{started}\:\mathrm{from} \\ $$$$\mathrm{any}\:\mathrm{point}\:\mathrm{in}\:\mathrm{space}\:\mathrm{except}\:\mathrm{origin} \\ $$$$,\:\mathrm{Please}\:\mathrm{give}\:\mathrm{that}\:\mathrm{general}\:\mathrm{case} \\ $$$$\mathrm{to}\:\mathrm{understand}. \\ $$
Commented by mr W last updated on 12/Dec/19
$${since}\:{we}\:{only}\:{need}\:{to}\:{find}\:{the}\:\left({small}\right) \\ $$$${change}\:{of}\:{the}\:{direction}\:{of}\:{the}\:{line}, \\ $$$${we}\:{can}\:{consider}\:{the}\:{change}\:{of}\:{a} \\ $$$${unit}\:{length}\:{segment}\:{of}\:{it}\:{and}\:{we} \\ $$$${can}\:{translate}\:{the}\:{segment}\:{such} \\ $$$${that}\:{one}\:{end}\:{of}\:{the}\:{segment}\:{is}\:{at} \\ $$$${the}\:{same}\:{point}.\:{the}\:{translation} \\ $$$${doesn}'{t}\:{affect}\:{the}\:{direction}\:{of}\:{the} \\ $$$${line}. \\ $$
Commented by mr W last updated on 12/Dec/19
Commented by vishalbhardwaj last updated on 12/Dec/19
$$\mathrm{please}\:\mathrm{sir}\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{you} \\ $$$$\mathrm{to}\:\mathrm{use}\:\mathrm{general}\:\mathrm{case}\:\mathrm{please}\:\mathrm{post} \\ $$$$\mathrm{it} \\ $$
Commented by mr W last updated on 12/Dec/19
$${i}\:{have}\:{posted}\:{what}\:{i}\:{think}\:{is}\:{the} \\ $$$${correct}\:{answer}\:{to}\:{the}\:{question}\:{sir}. \\ $$
Answered by vishalbhardwaj last updated on 12/Dec/19
Answered by vishalbhardwaj last updated on 12/Dec/19