Menu Close

If-abc-1-and-a-b-c-gt-0-prove-that-a-b-2-c-1-b-c-2-a-1-c-a-2-b-1-3-2-




Question Number 142906 by liberty last updated on 07/Jun/21
If abc=1 and a,b,c>0 prove  that (a/(b^2 (c+1)))+(b/(c^2 (a+1)))+(c/(a^2 (b+1))) ≥ (3/2)
Ifabc=1anda,b,c>0provethatab2(c+1)+bc2(a+1)+ca2(b+1)32
Answered by Snail last updated on 07/Jun/21
Let us recall Titu′s Lemma  Σ(x_i ^2 /y_i )≥ (((Σx_i )^2 )/(Σy_i ))  Denote give  ineauality by E  As abc=1  Multiplying the inequality both side  by a^2 b^2 c^2  and using its valud 1 we ca transform  it and get ...  ((a^3 c^2 )/(c+1))+((b^3 a^2 )/(a+1))+((c^3 b^2 )/(b+1))≥(3/2)  now let x_1 =a^2 c^2  x_2 =b^2 a^2  x_3 =c^2 b^2   y_1 =((c+1)/a)   y_2 =((a+1)/b)  y_3 =((b+1)/c)    E ≥(((a^2 c^2 +b^2 c^2 +c^2 a^2 )^2 )/(((c+1)/a)+((b+1)/c)+((a+1)/b)))  =Z(Let)  Now usi ng the fact that    (a^2 c^2 +b^2 c^2 +a^2 b^2 )^2 ≥9  and by doing LCM of denominator we can get that   Z =(3/(2 ))  So E≥Z equality holds when all  (x_i /y_i ) are same   Proved....
LetusrecallTitusLemmaΣxi2yi(Σxi)2ΣyiDenotegiveineaualitybyEAsabc=1Multiplyingtheinequalitybothsidebya2b2c2andusingitsvalud1wecatransformitandgeta3c2c+1+b3a2a+1+c3b2b+132nowletx1=a2c2x2=b2a2x3=c2b2y1=c+1ay2=a+1by3=b+1cE(a2c2+b2c2+c2a2)2c+1a+b+1c+a+1b=Z(Let)Nowusingthefactthat(a2c2+b2c2+a2b2)29andbydoingLCMofdenominatorwecangetthatZ=32SoEZequalityholdswhenallxiyiaresameProved.

Leave a Reply

Your email address will not be published. Required fields are marked *