Menu Close

If-and-are-the-coefficient-of-x-8-and-x-24-respectively-in-the-expansion-of-x-4-2-1-x-4-10-in-powers-of-x-then-is-equal-to-




Question Number 131248 by bramlexs22 last updated on 03/Feb/21
If α and β are the coefficient   of x^8  and x^(−24)  respectively   in the expansion of [ x^4 +2+(1/x^4 ) ]^(10)   in powers of x then (α/β) is equal to
Ifαandβarethecoefficientofx8andx24respectivelyintheexpansionof[x4+2+1x4]10inpowersofxthenαβisequalto
Answered by EDWIN88 last updated on 03/Feb/21
 [(x^4 +x^(−4) )+2 ]^(10) = Σ_(k=0) ^(20)   (((20)),((  k)) ) (x^4 +x^(−4) )^(20−k)  (2)^k    = Σ_(k=0) ^(20)   (((20)),((  k)) ) 2^k  [ Σ_(k=0) ^(20−k)   (((20−k)),((     k)) )(x^4 )^(20−k)  (x^(−4) )^k  ]
[(x4+x4)+2]10=20k=0(20k)(x4+x4)20k(2)k=20k=0(20k)2k[20kk=0(20kk)(x4)20k(x4)k]
Answered by mr W last updated on 03/Feb/21
[x^4 +2+(1/x^4 )]^(10)   =(1/x^(40) )[x^8 +2x^4 +1]^(10)   =(1/x^(40) )(1+x^4 )^(20)   =(1/x^(40) )Σ_(k=0) ^(20) C_k ^(20) x^(4k)   =Σ_(k=0) ^(20) C_k ^(20) x^(4k−40)   term x^8 : 4k−40=8 ⇒k=12 ⇒α=C_(12) ^(20)   term x^(−24) : 4k−40=−24 ⇒k=4 ⇒β=C_4 ^(20)   (α/β)=(C_(12) ^(20) /C_4 ^(20) )=((20!)/(12!8!))×((4!×16!)/(20!))=((16×15×14×13)/(8×7×6×5))  =26
[x4+2+1x4]10=1x40[x8+2x4+1]10=1x40(1+x4)20=1x4020k=0Ck20x4k=20k=0Ck20x4k40termx8:4k40=8k=12α=C1220termx24:4k40=24k=4β=C420αβ=C1220C420=20!12!8!×4!×16!20!=16×15×14×138×7×6×5=26
Commented by EDWIN88 last updated on 03/Feb/21
nice
nice