Question Number 131248 by bramlexs22 last updated on 03/Feb/21
$${If}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{coefficient}\: \\ $$$${of}\:{x}^{\mathrm{8}} \:{and}\:{x}^{−\mathrm{24}} \:{respectively}\: \\ $$$${in}\:{the}\:{expansion}\:{of}\:\left[\:{x}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:\right]^{\mathrm{10}} \\ $$$${in}\:{powers}\:{of}\:{x}\:{then}\:\frac{\alpha}{\beta}\:{is}\:{equal}\:{to}\: \\ $$
Answered by EDWIN88 last updated on 03/Feb/21
$$\:\left[\left({x}^{\mathrm{4}} +{x}^{−\mathrm{4}} \right)+\mathrm{2}\:\right]^{\mathrm{10}} =\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}} {\sum}}\:\begin{pmatrix}{\mathrm{20}}\\{\:\:{k}}\end{pmatrix}\:\left({x}^{\mathrm{4}} +{x}^{−\mathrm{4}} \right)^{\mathrm{20}−{k}} \:\left(\mathrm{2}\right)^{{k}} \\ $$$$\:=\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}} {\sum}}\:\begin{pmatrix}{\mathrm{20}}\\{\:\:{k}}\end{pmatrix}\:\mathrm{2}^{{k}} \:\left[\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}−{k}} {\sum}}\:\begin{pmatrix}{\mathrm{20}−{k}}\\{\:\:\:\:\:{k}}\end{pmatrix}\left({x}^{\mathrm{4}} \right)^{\mathrm{20}−{k}} \:\left({x}^{−\mathrm{4}} \right)^{{k}} \:\right] \\ $$
Answered by mr W last updated on 03/Feb/21
$$\left[{x}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right]^{\mathrm{10}} \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{40}} }\left[{x}^{\mathrm{8}} +\mathrm{2}{x}^{\mathrm{4}} +\mathrm{1}\right]^{\mathrm{10}} \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{40}} }\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{20}} \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{40}} }\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}} {\sum}}{C}_{{k}} ^{\mathrm{20}} {x}^{\mathrm{4}{k}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{20}} {\sum}}{C}_{{k}} ^{\mathrm{20}} {x}^{\mathrm{4}{k}−\mathrm{40}} \\ $$$${term}\:{x}^{\mathrm{8}} :\:\mathrm{4}{k}−\mathrm{40}=\mathrm{8}\:\Rightarrow{k}=\mathrm{12}\:\Rightarrow\alpha={C}_{\mathrm{12}} ^{\mathrm{20}} \\ $$$${term}\:{x}^{−\mathrm{24}} :\:\mathrm{4}{k}−\mathrm{40}=−\mathrm{24}\:\Rightarrow{k}=\mathrm{4}\:\Rightarrow\beta={C}_{\mathrm{4}} ^{\mathrm{20}} \\ $$$$\frac{\alpha}{\beta}=\frac{{C}_{\mathrm{12}} ^{\mathrm{20}} }{{C}_{\mathrm{4}} ^{\mathrm{20}} }=\frac{\mathrm{20}!}{\mathrm{12}!\mathrm{8}!}×\frac{\mathrm{4}!×\mathrm{16}!}{\mathrm{20}!}=\frac{\mathrm{16}×\mathrm{15}×\mathrm{14}×\mathrm{13}}{\mathrm{8}×\mathrm{7}×\mathrm{6}×\mathrm{5}} \\ $$$$=\mathrm{26} \\ $$
Commented by EDWIN88 last updated on 03/Feb/21
$${nice} \\ $$