Menu Close

If-and-are-the-roots-of-x-2-x-1-0-Find-23-23-without-demoivre-s-theorem-




Question Number 74742 by TawaTawa last updated on 30/Nov/19
If  α and β are the roots of     x^2  − x + 1   =  0,    Find         α^(23)  + β^(23)      without demoivre′s theorem.
Ifαandβaretherootsofx2x+1=0,Findα23+β23withoutdemoivrestheorem.
Commented by abdomathmax last updated on 02/Dec/19
x^2 −x+1=0 →Δ=1−4=−3 ⇒α=((1+i(√3))/2)  and β=((1−i(√3))/2)=α^−   we have x^2 −x+1=0 ⇒  x^2 =x−1 ⇒x^(2n) =(x−1)^n  ⇒x^(2n+1) =x(x−1)^n  ⇒  α^(23) =α^(2×11+1) =α(α−1)^(11)  also  β^(23) =(α^− )^(2×11+1) =α^− (α^− −1)^(11)  ⇒  α^(23)  +β^(23) =α(α−1)^(11)  +α^− (α^− −1)^(11)   =2Re( α(α−1)^(11) )  but  α(α−1)^(11)   =((1+i(√3))/2)(((i(√3)−1)/2))^(11) =(1/2^(12) )(1+i(√3))Σ_(k=0) ^(11) C_(11) ^k (i(√3))^k (−1)^(11−k)   =(1/2^(12) )(1+i(√3)){ Σ_(p=0) ^5  C_(11) ^(2p)   (−1)^p   3^p (−1)^(11−2p)   +Σ_(p=1) ^5  C_(11) ^(2p+1)   i(−1)^p   (√3)×3^p (−1)^(10−2p) }  rest to extract Resl of this quantity....
x2x+1=0Δ=14=3α=1+i32andβ=1i32=αwehavex2x+1=0x2=x1x2n=(x1)nx2n+1=x(x1)nα23=α2×11+1=α(α1)11alsoβ23=(α)2×11+1=α(α1)11α23+β23=α(α1)11+α(α1)11=2Re(α(α1)11)butα(α1)11=1+i32(i312)11=1212(1+i3)k=011C11k(i3)k(1)11k=1212(1+i3){p=05C112p(1)p3p(1)112p+p=15C112p+1i(1)p3×3p(1)102p}resttoextractReslofthisquantity.
Answered by Smail last updated on 30/Nov/19
α=−j and  β=−j^2   (−j)^(23) +(−j^2 )^(23) =−(j^(23) +(j^(46) )  =−(j^(21) j^2 +jj^(45) )=−((j^3 )^7 j^2 +j(j^3 )^(15) )  =−(j^2 +j)=1  Thus, α^(23) +β^(23) =1  with  j=e^(2iπ/3)
α=jandβ=j2(j)23+(j2)23=(j23+(j46)=(j21j2+jj45)=((j3)7j2+j(j3)15)=(j2+j)=1Thus,α23+β23=1withj=e2iπ/3
Commented by TawaTawa last updated on 30/Nov/19
God bless you sir
Godblessyousir
Commented by TawaTawa last updated on 30/Nov/19
But is it possible without complex number and  cube root of unity
Butisitpossiblewithoutcomplexnumberandcuberootofunity
Answered by mind is power last updated on 30/Nov/19
(x+1)(x^2 −x+1)=x^3 +1=0  ⇒α^3 =β^3 =−1  ⇒∀k∈N   α^3 =β^3 =(−1)^k =1 if k≡0(2),−1  else  23=3.7+2  ⇒α^(3.7+2) +β^(3.7+2)   =(−1).α^2 −(β)^2 =−α^2 −β^2   α^2 =−1+α  ,β=−1+β  =−(α+β)+2  α+β=−((−1)/1)=1,som of root  =−1+2=1
(x+1)(x2x+1)=x3+1=0α3=β3=1kNα3=β3=(1)k=1ifk0(2),1else23=3.7+2α3.7+2+β3.7+2=(1).α2(β)2=α2β2α2=1+α,β=1+β=(α+β)+2α+β=11=1,somofroot=1+2=1
Commented by TawaTawa last updated on 30/Nov/19
God bless you sir.
Godblessyousir.
Commented by TawaTawa last updated on 30/Nov/19
Can we use it for:       x^2  − 2x + 4  =  0  Find     α^(23)  + β^(23)
Canweuseitfor:x22x+4=0Findα23+β23
Commented by mind is power last updated on 30/Nov/19
⇔(x^2 /4)−(x/2)+1=0  let Y=(x/2)⇔Y^2 −Y+1=0...E  root of E are   (α/2),(β/2)  by previous Quation  we have ((α/2))^(23) +((β/2))^(23) =1  ⇒α^(23) +β^(23) =2^(23)
x24x2+1=0letY=x2Y2Y+1=0ErootofEareα2,β2bypreviousQuationwehave(α2)23+(β2)23=1α23+β23=223
Commented by TawaTawa last updated on 30/Nov/19
God bless you sir
Godblessyousir
Commented by TawaTawa last updated on 30/Nov/19
I appreciate sir.
Iappreciatesir.
Commented by TawaTawa last updated on 30/Nov/19
Sir,  is there any way this method cannot be used appart  from complex number ?  Or the method can work for any question ??
Sir,isthereanywaythismethodcannotbeusedappartfromcomplexnumber?Orthemethodcanworkforanyquestion??
Commented by TawaTawa last updated on 30/Nov/19
Something like:    3x^2  + 5x + 7  =  0  Find      α^(23)  + β^(23)
Somethinglike:3x2+5x+7=0Findα23+β23
Commented by mind is power last updated on 30/Nov/19
in this you have too solve Equation and   use complex anslysis  previous one our equation ⇒X^3 =−1 witch redious calclus  ther 3x^2 +5x+7=0  ⇒x=((−5−i(√(59)))/6),x_2 =((−5+i(√(59)))/6),isee no other methode  i will try later
inthisyouhavetoosolveEquationandusecomplexanslysispreviousoneourequationX3=1witchrediouscalclusther3x2+5x+7=0x=5i596,x2=5+i596,iseenoothermethodeiwilltrylater
Commented by TawaTawa last updated on 30/Nov/19
I can use complex number  Help me find other method sir
IcanusecomplexnumberHelpmefindothermethodsir
Commented by TawaTawa last updated on 30/Nov/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *