Menu Close

If-asin-1-x-bcos-1-x-c-then-the-value-of-asin-1-x-bcos-1-x-whenever-exists-is-equal-to-




Question Number 131296 by EDWIN88 last updated on 03/Feb/21
 If asin^(−1) (x)−bcos^(−1) (x)= c   then the value of asin^(−1) (x)+bcos^(−1) (x)   (whenever exists) is equal to ?
Ifasin1(x)bcos1(x)=cthenthevalueofasin1(x)+bcos1(x)(wheneverexists)isequalto?
Answered by liberty last updated on 03/Feb/21
We have sin^(−1) (x)+cos^(−1) (x)=(π/2)  then bsin^(−1) (x)+bcos^(−1) (x)= ((bπ)/2)...(i)            asin^(−1) (x)−bcos^(−1) (x)= c ...(ii)   ∴ on adding (i) and (ii) we get    sin^(−1) (x)= ((((bπ)/2) + c)/(a+b)) and cos^(−1) (x)=((((aπ)/2)−c)/(a+b))  Therefore asin^(−1) (x)+bcos^(−1) (x)= ((πab+c(a−b))/(a+b))
Wehavesin1(x)+cos1(x)=π2thenbsin1(x)+bcos1(x)=bπ2(i)asin1(x)bcos1(x)=c(ii)onadding(i)and(ii)wegetsin1(x)=bπ2+ca+bandcos1(x)=aπ2ca+bThereforeasin1(x)+bcos1(x)=πab+c(ab)a+b
Commented by EDWIN88 last updated on 03/Feb/21
  sehr interessante Erklrung Sir
sehrinteressanteErklrungSir
Answered by mr W last updated on 03/Feb/21
t=sin^(−1) x  (π/2)−t=cos^(−1) x  asin^(−1) (x)−bcos^(−1) (x)=c  ⇒at−b((π/2)−t)=c  ⇒(a+b)t=c+((bπ)/2)  ⇒t=(1/(a+b))(c+((bπ)/2))  asin^(−1) (x)+bcos^(−1) (x)   =at+b((π/2)−t)  =(a−b)t+((bπ)/2)  =((a−b)/(a+b))(c+((bπ)/2))+((bπ)/2)  =(((a−b)c+abπ)/(a+b))
t=sin1xπ2t=cos1xasin1(x)bcos1(x)=catb(π2t)=c(a+b)t=c+bπ2t=1a+b(c+bπ2)asin1(x)+bcos1(x)=at+b(π2t)=(ab)t+bπ2=aba+b(c+bπ2)+bπ2=(ab)c+abπa+b
Commented by EDWIN88 last updated on 03/Feb/21
nice
nice