Menu Close

If-ax-2-bx-c-0-prove-that-x-2c-b-b-2-4ac-




Question Number 7161 by Tawakalitu. last updated on 14/Aug/16
If  ax^2  + bx + c = 0,  prove that.  x = ((2c)/(− b ± (√(b^2  − 4ac))))
Ifax2+bx+c=0,provethat.x=2cb±b24ac
Commented by sou1618 last updated on 14/Aug/16
(∗) ax^2 +bx+c=0    if x=0     c=0⇒x=(0/(−b±(√(b^2 −4ac))))=0    if x≠0  (∗)÷x^2  ⇒ a+(b/x)+(c/x^2 )=0  c{((1/x))^2 +(b/c)((1/x))+(a/c)}=0  ((1/x))^2 +2{(b/(2c))((1/x))}+{((b/(2c)))^2 −((b/(2c)))^2 }+(a/c)=0  ((1/x)+(b/(2c)))^2 =(b^2 /(4c^2 ))−(a/c)  ((1/x)+(b/(2c)))^2 =((b^2 −4ac)/(4c^2 ))  (1/x)+(b/(2c))=((±(√(b^2 −4ac)))/(2c))  (1/x)=((−b±(√(b^2 −4ac)))/(2c))  x=((2c)/(−b±(√(b^2 −4ac))))
()ax2+bx+c=0ifx=0c=0x=0b±b24ac=0ifx0()\boldsymbol÷x2a+bx+cx2=0c{(1x)2+bc(1x)+ac}=0(1x)2+2{b2c(1x)}+{(b2c)2(b2c)2}+ac=0(1x+b2c)2=b24c2ac(1x+b2c)2=b24ac4c21x+b2c=±b24ac2c1x=b±b24ac2cx=2cb±b24ac
Commented by aftab ahmad last updated on 14/Aug/16
Nice approach sir.
\boldsymbolNiceapproachsir.
Commented by Tawakalitu. last updated on 14/Aug/16
Thanks so much sir. i really appreciate.
Thankssomuchsir.ireallyappreciate.
Answered by Yozzia last updated on 14/Aug/16
ax^2 +bx+c=0   (a≠0)  ⇒x=((−b±(√(b^2 −4ac)))/(2a))  x=(((−b±(√(b^2 −4ac)))(−b∓(√(b^2 −4ac))))/(2a(−b∓(√(b^2 −4ac)))))  x=((b^2 −b^2 +4ac)/(2a(−b∓(√(b^2 −4ac)))))  x=((4ac)/(2a(−b∓(√(b^2 −4ac)))))=((2c)/(−b∓(√(b^2 −4ac))))  This is equivalent to   x=((2c)/(−b±(√(b^2 −4ac)))).
ax2+bx+c=0(a0)x=b±b24ac2ax=(b±b24ac)(bb24ac)2a(bb24ac)x=b2b2+4ac2a(bb24ac)x=4ac2a(bb24ac)=2cbb24acThisisequivalenttox=2cb±b24ac.
Commented by Tawakalitu. last updated on 14/Aug/16
Thank you very much sir for your effort.
Thankyouverymuchsirforyoureffort.Thankyouverymuchsirforyoureffort.

Leave a Reply

Your email address will not be published. Required fields are marked *