Menu Close

If-c-gt-0-and-4a-c-lt-2b-then-ax-2-bx-c-0-has-a-root-in-which-intervals-a-0-2-b-2-3-c-3-4-d-2-0-




Question Number 12305 by Gaurav3651 last updated on 18/Apr/17
If c>0 and 4a+c<2b,then  ax^2 −bx+c=0 has a root in which  intervals?  (a)  (0,2)  (b)  (2,3)  (c)  (3,4)  (d)  (−2,0)
$${If}\:{c}>\mathrm{0}\:{and}\:\mathrm{4}{a}+{c}<\mathrm{2}{b},{then} \\ $$$${ax}^{\mathrm{2}} −{bx}+{c}=\mathrm{0}\:{has}\:{a}\:{root}\:{in}\:{which} \\ $$$${intervals}? \\ $$$$\left({a}\right)\:\:\left(\mathrm{0},\mathrm{2}\right) \\ $$$$\left({b}\right)\:\:\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\left({c}\right)\:\:\left(\mathrm{3},\mathrm{4}\right) \\ $$$$\left({d}\right)\:\:\left(−\mathrm{2},\mathrm{0}\right) \\ $$
Answered by ajfour last updated on 18/Apr/17
f(0)=c >0  ;  f(2)= 4a−2b+c <0  so f(x)= ax^2 −bx+c   has a root in (0,2) .
$${f}\left(\mathrm{0}\right)={c}\:>\mathrm{0}\:\:;\:\:{f}\left(\mathrm{2}\right)=\:\mathrm{4}{a}−\mathrm{2}{b}+{c}\:<\mathrm{0} \\ $$$${so}\:{f}\left({x}\right)=\:{ax}^{\mathrm{2}} −{bx}+{c}\: \\ $$$${has}\:{a}\:{root}\:{in}\:\left(\mathrm{0},\mathrm{2}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *