Menu Close

If-cos-1-sin-a-a-pi-2-2kpi-So-tan-2-A-a-a-1-D-a-1-a-1-B-1-a-1-E-a-a-1-C-a-1-a




Question Number 10955 by Joel576 last updated on 04/Mar/17
If  ((cos θ)/(1 − sin θ)) = a           a ≠ (π/2) + 2kπ  So,  tan (θ/2) = ...  (A)  (a/(a + 1))                 (D)  ((a + 1)/(a − 1))  (B)  (1/(a + 1))                  (E)  (a/(a − 1))  (C)  ((a − 1)/(a + 1))
Ifcosθ1sinθ=aaπ2+2kπSo,tanθ2=(A)aa+1(D)a+1a1(B)1a+1(E)aa1(C)a1a+1
Answered by ajfour last updated on 04/Mar/17
  ((sin ((π/2)−θ))/(1−cos ((π/2)−θ)))=((2sin ((π/4)−(θ/2))cos((π/4)−(θ/2)) )/(2sin^2 ((π/4)−(θ/2))))  =cot ((π/4)−(θ/2)) = a  tan ((π/4)−(θ/2)) =(1/a)  ; let tan ((θ/2))= p  ((1−p)/(1+p)) =(1/a) ⇒ a−ap =1+p  p =((a−1)/(a+1)) .
sin(π2θ)1cos(π2θ)=2sin(π4θ2)cos(π4θ2)2sin2(π4θ2)=cot(π4θ2)=atan(π4θ2)=1a;lettan(θ2)=p1p1+p=1aaap=1+pp=a1a+1.
Commented by Joel576 last updated on 05/Mar/17
thank you very much
thankyouverymuch
Answered by ridwan balatif last updated on 04/Mar/17
another way  (((cosθ)/(1−sinθ)))^2 =(a)^2   ((cos^2 θ)/((1−sinθ)^2 ))=a^2   (((1−sin^2 θ))/((1−sinθ)^2 ))=a^2   (((1−sinθ)(1+sinθ))/((1−sinθ)(1−sinθ)))=a^2   ((1+sinθ)/(1−sinθ))=a^2   sinθ=((a^2 −1)/(a^2 +1))  cosθ=((2a)/(a^2 +1))  remember: tan(θ/2)=((sinθ)/(1+cosθ))  tan(θ/2)=(((a^2 −1)/(a^2 +1))/(1+((2a)/(a^2 +1))))  tan(θ/2)=(((a^2 −1)/(a^2 +1))/(((a^2 +2a+1)/(a^2 +1))  ))  tan(θ/2)=((a^2 −1)/(a^2 +2a+1))  tan(θ/2)=(((a−1)(a+1))/((a+1)^2 ))  tan(θ/2)=((a−1)/(a+1))  Answer: (C)
anotherway(cosθ1sinθ)2=(a)2cos2θ(1sinθ)2=a2(1sin2θ)(1sinθ)2=a2(1sinθ)(1+sinθ)(1sinθ)(1sinθ)=a21+sinθ1sinθ=a2sinθ=a21a2+1cosθ=2aa2+1remember:tanθ2=sinθ1+cosθtanθ2=a21a2+11+2aa2+1tanθ2=a21a2+1a2+2a+1a2+1tanθ2=a21a2+2a+1tanθ2=(a1)(a+1)(a+1)2tanθ2=a1a+1Answer:(C)
Commented by Joel576 last updated on 05/Mar/17
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *