Menu Close

if-cos-2-m-2-1-3-tan-3-2-tan-a-prove-that-cos-2-a-1-3-sin-2-a-1-3-2-m-2-1-3-




Question Number 73665 by aliesam last updated on 14/Nov/19
if    cos^2 (θ)=((m^2 −1)/3)  ,  tan^3 ((θ/2))=tan(a)    prove that    ((cos^2 (a)))^(1/3)  + ((sin^2 (a)))^(1/3)  = ((((2/m))^2 ))^(1/3)
ifcos2(θ)=m213,tan3(θ2)=tan(a)provethatcos2(a)3+sin2(a)3=(2m)23
Answered by Tanmay chaudhury last updated on 14/Nov/19
cosθ=(√(((m^2 −1)/3) )) →((1−tan^2 (θ/2))/(1+tan^2 (θ/2)))=(√((m^2 −1)/3)) =(a/1)  ((1+tan^2 (θ/2))/(1−tan^2 (θ/2)))=(1/a)→(2/(2tan^2 (θ/2)))=((1+a)/(1−a))→tan^2 (θ/2)=((1−a)/(1+a))  tan(θ/2)=(√(((1−a)/(1+a))[so  ))   tanα=tan^3 ((θ/2))=(((1−a)/(1+a)))^(3/2)   cos^2 α=(1/(1+tan^2 α))=(1/(1+(((1−a)/(1+a)))^3 ))=(((1+a)^3 )/(1+3a+3a^2 +a^3 +1−3a+3a^2 −a^3 ))  cos^2 α=(((1+a)^3 )/(2+6a^2 ))→sin^2 α=((2+6a^2 −1−3a−3a^2 −a^3 )/(2+6a^2 ))  sin^2 α=((1−3a+3a^2 −a^3 )/(2+6a^2 ))=(((1−a)^3 )/(2+6a^2 ))  (cos^2 α)^(1/3) +(sin^2 α)^(1/3)   =((1+a+1−a)/((2+6a^2 )^(1/3) ))=(2/({2+6×((m^2 −1)/3))^(1/3) ))=(2/((2+2m^2 −2)^(1/3) ))  =(2^(1−(1/3)) /m^(2/3) )=((2/m))^(2/3) proved
cosθ=m2131tan2θ21+tan2θ2=m213=a11+tan2θ21tan2θ2=1a22tan2θ2=1+a1atan2θ2=1a1+atanθ2=1a1+a[sotanα=tan3(θ2)=(1a1+a)32cos2α=11+tan2α=11+(1a1+a)3=(1+a)31+3a+3a2+a3+13a+3a2a3cos2α=(1+a)32+6a2sin2α=2+6a213a3a2a32+6a2sin2α=13a+3a2a32+6a2=(1a)32+6a2(cos2α)13+(sin2α)13=1+a+1a(2+6a2)13=2{2+6×m213)13=2(2+2m22)13=2113m23=(2m)23proved

Leave a Reply

Your email address will not be published. Required fields are marked *