Question Number 143348 by gsk2684 last updated on 13/Jun/21
$$\mathrm{if}\:\:\frac{\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{y}}+\frac{\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{y}}=\mathrm{1}\:\mathrm{then}\: \\ $$$$\mathrm{find}\:\frac{\mathrm{cos}\:^{\mathrm{4}} \mathrm{y}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}+\frac{\mathrm{sin}\:^{\mathrm{4}} \mathrm{y}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}=? \\ $$
Answered by som(math1967) last updated on 13/Jun/21
$$\frac{{cos}^{\mathrm{4}} {x}}{{cos}^{\mathrm{2}} {y}}+\frac{{sin}^{\mathrm{4}} {x}}{{sin}^{\mathrm{2}} {y}}=\mathrm{1} \\ $$$${cos}^{\mathrm{4}} {xsin}^{\mathrm{2}} {y}+{sin}^{\mathrm{4}} {xcos}^{\mathrm{2}} {y}={sin}^{\mathrm{2}} {ycos}^{\mathrm{2}} {y} \\ $$$$\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)^{\mathrm{2}} {sin}^{\mathrm{2}} {y}+{sin}^{\mathrm{4}} {x}\left(\mathrm{1}−{sin}^{\mathrm{2}} {y}\right)={sin}^{\mathrm{2}} {ycos}^{\mathrm{2}} {y} \\ $$$$\cancel{{sin}^{\mathrm{2}} {y}}−\mathrm{2}{sin}^{\mathrm{2}} {xsin}^{\mathrm{2}} {y}+\cancel{{sin}^{\mathrm{4}} {xsin}^{\mathrm{2}} {y}} \\ $$$$+{sin}^{\mathrm{4}} {x}−\cancel{{sin}^{\mathrm{4}} {xsin}^{\mathrm{2}} {y}}=\cancel{{sin}^{\mathrm{2}} {y}}−{sin}^{\mathrm{4}} {y} \\ $$$${sin}^{\mathrm{4}} {x}−\mathrm{2}{sin}^{\mathrm{2}} {xsin}^{\mathrm{2}} {y}+{sin}^{\mathrm{4}} {y}=\mathrm{0} \\ $$$$\left({sin}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {y}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\therefore{sin}^{\mathrm{2}} {x}={sin}^{\mathrm{2}} {y} \\ $$$$\mathrm{1}−{cos}^{\mathrm{2}} {x}=\mathrm{1}−{cos}^{\mathrm{2}} {y} \\ $$$$\therefore{cos}^{\mathrm{2}} {x}={cos}^{\mathrm{2}} {y} \\ $$$$ \\ $$$$=\frac{{cos}^{\mathrm{4}} {y}}{{cos}^{\mathrm{2}} {x}}+\frac{{sin}^{\mathrm{4}} {y}}{{sin}^{\mathrm{2}} {x}} \\ $$$$=\frac{{cos}^{\mathrm{4}} {y}}{{cos}^{\mathrm{2}} {y}}\:+\frac{{sin}^{\mathrm{4}} {y}}{{sin}^{\mathrm{2}} {y}} \\ $$$$={cos}^{\mathrm{2}} {y}+{sin}^{\mathrm{2}} {y}=\mathrm{1}\:{ans} \\ $$
Commented by gsk2684 last updated on 13/Jun/21
$$\mathscr{T}\mathrm{hank}\:\mathrm{you}\:\mathrm{sir} \\ $$