Menu Close

if-cot-cosec-1-3-then-find-the-value-of-where-0-lt-2pi-




Question Number 72497 by Shamim last updated on 29/Oct/19
if, cot θ+cosec θ=(1/( (√3))) then find the value  of θ where 0<θ≤2π.
if,cotθ+cosecθ=13thenfindthevalueofθwhere0<θ2π.
Answered by behi83417@gmail.com last updated on 29/Oct/19
((cosθ)/(sinθ))+(1/(sinθ))=(1/( (√3)))⇒((1+cosθ)/(sinθ))=(1/( (√3)))⇒  ((2cos^2 (θ/2))/(2sin(θ/2)cos(θ/2)))=(1/( (√3)))⇒ { ((1.cos(θ/2)=0)),((2.cot(θ/2)=(1/( (√3))))) :}  1) cos(θ/2)=0⇒(θ/2)=±(π/2)+kπ⇒θ=kπ±π  [for:k=0,1⇒θ=0^• [not ok],π,2π]  2)cot(θ/2)=(1/( (√3)))=cot(π/3)⇒(θ/2)=(π/3)+lπ  ⇒[θ=((2π)/3)+2lπ,for:l=0,1⇒θ=((2π)/3),((5π)/3)]
cosθsinθ+1sinθ=131+cosθsinθ=132cos2θ22sinθ2cosθ2=13{1.cosθ2=02.cotθ2=131)cosθ2=0θ2=±π2+kπθ=kπ±π[for:k=0,1θ=0[notok],π,2π]2)cotθ2=13=cotπ3θ2=π3+lπ[θ=2π3+2lπ,for:l=0,1θ=2π3,5π3]
Answered by Tanmay chaudhury last updated on 29/Oct/19
cosec^2 θ−cot^2 θ=1  (cosecθ+cotθ)(cosecθ−cotθ)=1  (1/( (√3)))×(cosecθ−cotθ)=1  cozecθ+cotθ=(1/( (√3)))  cosecθ−cotθ=(√3)   2cosecθ=(1/( (√3)))+(√3) =(4/( (√3)))  cosecθ=(2/( (√3)))→sinθ=((√3)/2)=sin(π/3)  or  sin(π−(π/3))=sin((2π)/3)  2cotθ=(1/( (√3)))−(√3) →2cotθ=((−2)/( (√3)))  cotθ=((−1)/( (√3)))→tanθ=−(√3) =tan(π−(π/3))=tan((2π)/3)  so the solution is ((2π)/3)
cosec2θcot2θ=1(cosecθ+cotθ)(cosecθcotθ)=113×(cosecθcotθ)=1cozecθ+cotθ=13cosecθcotθ=32cosecθ=13+3=43cosecθ=23sinθ=32=sinπ3orsin(ππ3)=sin2π32cotθ=1332cotθ=23cotθ=13tanθ=3=tan(ππ3)=tan2π3sothesolutionis2π3
Answered by MJS last updated on 29/Oct/19
cot θ +cosec θ =(1/( (√3)))  (1/(tan θ))+(1/(sin θ))=(1/( (√3)))  ((1+cos θ)/(sin θ))=(1/( (√3)))  (1/(tan (θ/2)))=(1/( (√3)))  tan (θ/2) =(√3)  θ=((2π)/3)+2nπ  0<θ≤2π ⇒ θ=((2π)/3)
cotθ+cosecθ=131tanθ+1sinθ=131+cosθsinθ=131tanθ2=13tanθ2=3θ=2π3+2nπ0<θ2πθ=2π3

Leave a Reply

Your email address will not be published. Required fields are marked *