Menu Close

if-f-g-are-functions-of-R-R-not-constant-such-for-all-x-y-R-2-f-x-y-f-x-f-y-g-x-g-y-g-x-y-f-x-g-y-g-x-f-y-if-f-0-0-then-proof-os-disproof-that-x-R-f-x-2-g-x-2-1-




Question Number 636 by 123456 last updated on 17/Feb/15
if f,g are functions of R→R  not constant such for all (x,y)∈R^2    { ((f(x+y)=f(x)f(y)−g(x)g(y))),((g(x+y)=f(x)g(y)+g(x)f(y))) :}  if f′(0)=0 then proof os disproof  that ∀x∈R,[f(x)]^2 +[g(x)]^2 =1
$${if}\:{f},{g}\:{are}\:{functions}\:{of}\:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${not}\:{constant}\:{such}\:{for}\:{all}\:\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \\ $$$$\begin{cases}{{f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right)−{g}\left({x}\right){g}\left({y}\right)}\\{{g}\left({x}+{y}\right)={f}\left({x}\right){g}\left({y}\right)+{g}\left({x}\right){f}\left({y}\right)}\end{cases} \\ $$$${if}\:{f}'\left(\mathrm{0}\right)=\mathrm{0}\:{then}\:{proof}\:{os}\:{disproof} \\ $$$${that}\:\forall{x}\in\mathbb{R},\left[{f}\left({x}\right)\right]^{\mathrm{2}} +\left[{g}\left({x}\right)\right]^{\mathrm{2}} =\mathrm{1} \\ $$
Commented by prakash jain last updated on 16/Feb/15
g(x+y)=f(x)g(y)−g(x)f(y)  g(x+x)=f(x)g(x)−g(x)f(x)  g(2x)=0 ?  do you mean   g(x+y)=f(x)g(y)+g(x)f(y) ?  If  g(x+y)=f(x)g(y)−g(x)f(y)  g(2x)=f(x)g(x)−g(x)f(y)=0  Contradicts assumption f(x), g(x) are  not constant.
$${g}\left({x}+{y}\right)={f}\left({x}\right){g}\left({y}\right)−{g}\left({x}\right){f}\left({y}\right) \\ $$$${g}\left({x}+{x}\right)={f}\left({x}\right){g}\left({x}\right)−{g}\left({x}\right){f}\left({x}\right) \\ $$$${g}\left(\mathrm{2}{x}\right)=\mathrm{0}\:? \\ $$$$\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\: \\ $$$${g}\left({x}+{y}\right)={f}\left({x}\right){g}\left({y}\right)+{g}\left({x}\right){f}\left({y}\right)\:? \\ $$$$\mathrm{If} \\ $$$${g}\left({x}+{y}\right)={f}\left({x}\right){g}\left({y}\right)−{g}\left({x}\right){f}\left({y}\right) \\ $$$${g}\left(\mathrm{2}{x}\right)={f}\left({x}\right){g}\left({x}\right)−{g}\left({x}\right){f}\left({y}\right)=\mathrm{0} \\ $$$$\mathrm{Contradicts}\:\mathrm{assumption}\:{f}\left({x}\right),\:{g}\left({x}\right)\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{constant}. \\ $$
Commented by prakash jain last updated on 17/Feb/15
Squaring and adding  [f(x+y)]^2 +[g(x+y)]^2 =([f(x)]^2 +[g(x)]^2 )([f(y)]^2 +[g(y)]^2 )  If u(x)=[f(x)]^2 +[g(x)]^2   u(x+y)=u(x)u(y)⇒u(x)=e^(kx)   [f(x)]^2 +[g(x)]^2 =e^(kx)
$$\mathrm{Squaring}\:\mathrm{and}\:\mathrm{adding} \\ $$$$\left[{f}\left({x}+{y}\right)\right]^{\mathrm{2}} +\left[{g}\left({x}+{y}\right)\right]^{\mathrm{2}} =\left(\left[{f}\left({x}\right)\right]^{\mathrm{2}} +\left[{g}\left({x}\right)\right]^{\mathrm{2}} \right)\left(\left[{f}\left({y}\right)\right]^{\mathrm{2}} +\left[{g}\left({y}\right)\right]^{\mathrm{2}} \right) \\ $$$$\mathrm{If}\:{u}\left({x}\right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} +\left[{g}\left({x}\right)\right]^{\mathrm{2}} \\ $$$${u}\left({x}+{y}\right)={u}\left({x}\right){u}\left({y}\right)\Rightarrow{u}\left({x}\right)={e}^{{kx}} \\ $$$$\left[{f}\left({x}\right)\right]^{\mathrm{2}} +\left[{g}\left({x}\right)\right]^{\mathrm{2}} ={e}^{{kx}} \\ $$
Answered by prakash jain last updated on 17/Feb/15
From comments  [f(x)]^2 +[g(x)]^2 =e^(kx)   f(x+x)=[f(x)]^2 −[g(x)]^2   f(2x)=2[f(x)]^2 −e^(kx)   Differenting both sides  2f ′(2x)=4f(x) f ′(x)−ke^(kx)   put x=0  2f ′(0)=4 f(0) f ′(0)−k  Given f ′(0)=0  0=0−k⇒k=0  Hence  [f(x)]^2 +[g(x)]^2 =1
$$\mathrm{From}\:\mathrm{comments} \\ $$$$\left[{f}\left({x}\right)\right]^{\mathrm{2}} +\left[{g}\left({x}\right)\right]^{\mathrm{2}} ={e}^{{kx}} \\ $$$${f}\left({x}+{x}\right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} −\left[{g}\left({x}\right)\right]^{\mathrm{2}} \\ $$$${f}\left(\mathrm{2}{x}\right)=\mathrm{2}\left[{f}\left({x}\right)\right]^{\mathrm{2}} −{e}^{{kx}} \\ $$$$\mathrm{Differenting}\:\mathrm{both}\:\mathrm{sides} \\ $$$$\mathrm{2}{f}\:'\left(\mathrm{2}{x}\right)=\mathrm{4}{f}\left({x}\right)\:{f}\:'\left({x}\right)−{ke}^{{kx}} \\ $$$$\mathrm{put}\:{x}=\mathrm{0} \\ $$$$\mathrm{2}{f}\:'\left(\mathrm{0}\right)=\mathrm{4}\:{f}\left(\mathrm{0}\right)\:{f}\:'\left(\mathrm{0}\right)−{k} \\ $$$$\mathrm{Given}\:{f}\:'\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{0}=\mathrm{0}−{k}\Rightarrow{k}=\mathrm{0} \\ $$$$\mathrm{Hence} \\ $$$$\left[{f}\left({x}\right)\right]^{\mathrm{2}} +\left[{g}\left({x}\right)\right]^{\mathrm{2}} =\mathrm{1}\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *