Menu Close

If-F-x-0-arctanx-t-4-1-t-4-1-dt-find-F-x-




Question Number 78468 by Dah Solu Tion last updated on 17/Jan/20
If F(x) = ∫_0 ^(arctanx) (√(((t^4 −1)/(t^4 +1))dt,)) find F′(x).
$${If}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{{arctanx}} \sqrt{\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt},}\:{find}\:{F}'\left({x}\right). \\ $$
Commented by mathmax by abdo last updated on 17/Jan/20
we have F(x)=∫_0 ^(arctan(x)) (√((t^4 −1)/(t^4  +1)))dt ⇒  F(x)=∫_0 ^(arctan(x)) (√((t^4 +1−2)/(t^4  +1)))dt =∫_0 ^(arctanx) (1−(2/(t^4  +1)))^(1/2)  dt  (dF/dx)(x) =(1/(1+tan^2 x))(1−(2/(1+tan^4 x)))^(1/2) =cos^2 x(1−(2/((1+tan^2 x)−2tanx)))^(1/2)   =cos^2 x(1−(2/(cos^4 x−2tanx)))^(1/2)
$${we}\:{have}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{{arctan}\left({x}\right)} \sqrt{\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}^{\mathrm{4}} \:+\mathrm{1}}}{dt}\:\Rightarrow \\ $$$${F}\left({x}\right)=\int_{\mathrm{0}} ^{{arctan}\left({x}\right)} \sqrt{\frac{{t}^{\mathrm{4}} +\mathrm{1}−\mathrm{2}}{{t}^{\mathrm{4}} \:+\mathrm{1}}}{dt}\:=\int_{\mathrm{0}} ^{{arctanx}} \left(\mathrm{1}−\frac{\mathrm{2}}{{t}^{\mathrm{4}} \:+\mathrm{1}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{dt} \\ $$$$\frac{{dF}}{{dx}}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{tan}^{\mathrm{2}} {x}}\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+{tan}^{\mathrm{4}} {x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ={cos}^{\mathrm{2}} {x}\left(\mathrm{1}−\frac{\mathrm{2}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)−\mathrm{2}{tanx}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$={cos}^{\mathrm{2}} {x}\left(\mathrm{1}−\frac{\mathrm{2}}{{cos}^{\mathrm{4}} {x}−\mathrm{2}{tanx}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *