Menu Close

If-F-x-0-arctanx-t-4-1-t-4-1-dt-find-F-x-




Question Number 78468 by Dah Solu Tion last updated on 17/Jan/20
If F(x) = ∫_0 ^(arctanx) (√(((t^4 −1)/(t^4 +1))dt,)) find F′(x).
IfF(x)=0arctanxt41t4+1dt,findF(x).
Commented by mathmax by abdo last updated on 17/Jan/20
we have F(x)=∫_0 ^(arctan(x)) (√((t^4 −1)/(t^4  +1)))dt ⇒  F(x)=∫_0 ^(arctan(x)) (√((t^4 +1−2)/(t^4  +1)))dt =∫_0 ^(arctanx) (1−(2/(t^4  +1)))^(1/2)  dt  (dF/dx)(x) =(1/(1+tan^2 x))(1−(2/(1+tan^4 x)))^(1/2) =cos^2 x(1−(2/((1+tan^2 x)−2tanx)))^(1/2)   =cos^2 x(1−(2/(cos^4 x−2tanx)))^(1/2)
wehaveF(x)=0arctan(x)t41t4+1dtF(x)=0arctan(x)t4+12t4+1dt=0arctanx(12t4+1)12dtdFdx(x)=11+tan2x(121+tan4x)12=cos2x(12(1+tan2x)2tanx)12=cos2x(12cos4x2tanx)12

Leave a Reply

Your email address will not be published. Required fields are marked *