Menu Close

if-f-x-1-x-x-3-1-x-3-then-faind-f-1-x-




Question Number 131573 by mathlove last updated on 06/Feb/21
 if    f(x+(1/x))=x^3 +(1/x^3 )     then  faind    f((1/x))=?
iff(x+1x)=x3+1x3thenfaindf(1x)=?
Answered by rs4089 last updated on 06/Feb/21
f(x+(1/x))=x^3 +(1/x^3 )  f(x+(1/x))=(x+(1/x))(x^2 +(1/x^2 )−1)  f(x+(1/x))=(x+(1/x)){(x+(1/x))^2 −2−1}  f(x+(1/x))=(x+(1/x)){(x+(1/x))^2 −3}  now put x+(1/x) = t   f(t)=t(t^2 −3)  or f(x)=x(x^2 −3)  so  f((1/x)) =(1/x)((1/x^2 )−3)=((1−3x^2 )/x^3 )
f(x+1x)=x3+1x3f(x+1x)=(x+1x)(x2+1x21)f(x+1x)=(x+1x){(x+1x)221}f(x+1x)=(x+1x){(x+1x)23}nowputx+1x=tf(t)=t(t23)orf(x)=x(x23)sof(1x)=1x(1x23)=13x2x3
Commented by mathlove last updated on 06/Feb/21
tanks
tanks
Answered by mathmax by abdo last updated on 06/Feb/21
we have a^3  +b^3  =(a+b)^3 −3ab(a+b) ⇒  f(x+(1/x))=(x+(1/x))^3 −3(x+(1/x)) let x+(1/x)=t ⇒f(t)=t^3 −3t ⇒  f((1/x))=(1/x^3 )−(3/x) =((x^2 −3)/x^3 )
wehavea3+b3=(a+b)33ab(a+b)f(x+1x)=(x+1x)33(x+1x)letx+1x=tf(t)=t33tf(1x)=1x33x=x23x3

Leave a Reply

Your email address will not be published. Required fields are marked *