Menu Close

if-f-x-10-x-10-x-10-x-10-x-then-f-1-x-




Question Number 133893 by mathlove last updated on 25/Feb/21
  if       f(x)=((10^x −10^(−x) )/(10^x +10^(−x) ))      then  f^(−1) (x)=?
$$\:\:{if}\:\:\:\:\:\:\:{f}\left({x}\right)=\frac{\mathrm{10}^{{x}} −\mathrm{10}^{−{x}} }{\mathrm{10}^{{x}} +\mathrm{10}^{−{x}} }\:\:\:\:\:\:{then}\:\:{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$
Answered by rs4089 last updated on 25/Feb/21
y=((10^x −10^(−x) )/(10^x +10^(−x) ))  ⇒ ((1+y)/(1−y))=((10^x )/(10^(−x) ))  10^(2x) =((1+y)/(1−y))  x=(1/2)log_(10) (((1+y)/(1−y)))  x→f^(−1) (x) and  y→x  f^(−1) (x)=(1/2)log_(10) (((1+x)/(1−x)))
$${y}=\frac{\mathrm{10}^{{x}} −\mathrm{10}^{−{x}} }{\mathrm{10}^{{x}} +\mathrm{10}^{−{x}} }\:\:\Rightarrow\:\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}=\frac{\mathrm{10}^{{x}} }{\mathrm{10}^{−{x}} } \\ $$$$\mathrm{10}^{\mathrm{2}{x}} =\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}{log}_{\mathrm{10}} \left(\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}\right) \\ $$$${x}\rightarrow{f}^{−\mathrm{1}} \left({x}\right)\:{and}\:\:{y}\rightarrow{x} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{log}_{\mathrm{10}} \left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right) \\ $$
Answered by TheSupreme last updated on 25/Feb/21
10^x =e^(ln(10)x)   f(x)=(((e^(ln(10)x) −e^(ln(10)x) )/2)/((e^(ln(10)x) +e^(ln(10)x) )/2))=((sinh(ln(10)x))/(cosh(ln(10)x)))=tanh(ln(10)x)  ln(10)x=tanh^(−1) (y)  x=((tanh^(−1) (y))/(ln(10)))
$$\mathrm{10}^{{x}} ={e}^{{ln}\left(\mathrm{10}\right){x}} \\ $$$${f}\left({x}\right)=\frac{\frac{{e}^{{ln}\left(\mathrm{10}\right){x}} −{e}^{{ln}\left(\mathrm{10}\right){x}} }{\mathrm{2}}}{\frac{{e}^{{ln}\left(\mathrm{10}\right){x}} +{e}^{{ln}\left(\mathrm{10}\right){x}} }{\mathrm{2}}}=\frac{{sinh}\left({ln}\left(\mathrm{10}\right){x}\right)}{{cosh}\left({ln}\left(\mathrm{10}\right){x}\right)}={tanh}\left({ln}\left(\mathrm{10}\right){x}\right) \\ $$$${ln}\left(\mathrm{10}\right){x}={tanh}^{−\mathrm{1}} \left({y}\right) \\ $$$${x}=\frac{{tanh}^{−\mathrm{1}} \left({y}\right)}{{ln}\left(\mathrm{10}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *