Menu Close

If-f-x-2-zi-2y-3-z-2-j-xy-2-zk-Find-div-f-curl-f-at-1-1-1-




Question Number 27 by user1 last updated on 25/Jan/15
If f=x^2 zi−2y^3 z^2 j+xy^2 zk. Find div f, curl f,   at(1, −1, 1).
Iff=x2zi2y3z2j+xy2zk.Finddivf,curlf,at(1,1,1).
Answered by user1 last updated on 03/Nov/14
 div f=Σi∙(∂f/∂x)=▽∙f   =(i(∂/∂x)+j(∂/∂y)+k(∂/∂z))∙(x^2 zi−2y^3 z^2 j+xy^2 zk)   =(∂/∂x)(x^2 z)−(∂/∂y)(2y^3 z^2 )+(∂/∂z)(xy^2 z)   =2xz−6y^2 z^2 +xy^2    = −3  at (1, −1, 1)    curl f=▽×f= determinant (((   i),(        j),(   k)),((∂/∂x),(     (∂/∂y)),(  (∂/∂z))),((x^2 z),(−2y^3 z^2 ),(xy^2 z)))   =i(2xyz+4y^3 z)+j(x^2 −y^2 z)+k(0−0)   =  −6i  at  (1, −1, 1)
divf=Σifx=f=(ix+jy+kz)(x2zi2y3z2j+xy2zk)=x(x2z)y(2y3z2)+z(xy2z)=2xz6y2z2+xy2=3at(1,1,1)curlf=×f=|ijkxyzx2z2y3z2xy2z|=i(2xyz+4y3z)+j(x2y2z)+k(00)=6iat(1,1,1)