Menu Close

if-f-x-ax-2-bx-c-and-f-5-3f-2-an-intersiction-point-4-0-an-the-X-axis-faind-another-point-the-X-axis-




Question Number 136667 by mathlove last updated on 24/Mar/21
if      f(x)=ax^2 +bx+c      and   f(5)=−3f(2)  an intersiction  point  (−4,0)  an the  X-axis     faind another point   the X-axis
iff(x)=ax2+bx+candf(5)=3f(2)anintersictionpoint(4,0)antheXaxisfaindanotherpointtheXaxis
Answered by MJS_new last updated on 25/Mar/21
I should have finished it  (1)  25a+5b+c=−3(4a+2b+c) ⇔ 37a+11b+4c=0  (2)  16a−4b+c=0  (1)  ⇒ c=−((37a+11b)/4)  ⇒ (2)  ((27)/4)a−((27)/4)b=0 ⇒ b=a ⇒ c=−12a  ⇒ f(x)=a(x^2 +x−12)=a(x−3)(x+4)  ⇒ zeros are −4 and 3
Ishouldhavefinishedit(1)25a+5b+c=3(4a+2b+c)37a+11b+4c=0(2)16a4b+c=0(1)c=37a+11b4(2)274a274b=0b=ac=12af(x)=a(x2+x12)=a(x3)(x+4)zerosare4and3
Answered by ajfour last updated on 25/Mar/21
25a+5b+c=−3(4a+2b+c)  ⇒  37a+11b+4c=0  (c/a)=−((11)/4)((b/a))−((37)/4)  x=−(b/(2a))±((√(b^2 −4ac))/(2a))  x=−(b/(2a))±(√((1/4)((b/a))^2 −(c/a)))  x=(b/a){−(1/2)±(√((1/4)+((11)/(4(b/a)))+((37)/(4(b/a)^2 )))) }  say  (b/a)=p  (((−4)/p)+(1/2))^2 =(1/4)+((11)/(4p))+((37)/(4p^2 ))  ((16)/p^2 )−(4/p)=((11)/(4p))+((37)/(4p^2 ))  ((27)/(4p^2 ))−((27)/(4p))=0  ⇒  p=1  x={−(1/2)±(√((1/4)+((11)/4)+((37)/4))) }  x=−(1/2)±(7/2)   x=−4 or 3  other point on x-axis is  (3,0)
25a+5b+c=3(4a+2b+c)37a+11b+4c=0ca=114(ba)374x=b2a±b24ac2ax=b2a±14(ba)2cax=ba{12±14+114(b/a)+374(b/a)2}sayba=p(4p+12)2=14+114p+374p216p24p=114p+374p2274p2274p=0p=1x={12±14+114+374}x=12±72x=4or3otherpointonxaxisis(3,0)

Leave a Reply

Your email address will not be published. Required fields are marked *