Menu Close

If-f-x-determinant-sec-2-x-1-1-cos-2-x-cos-2-x-csc-2-x-1-cos-2-x-tan-2-x-evaluate-0-pi-4-f-x-dx-




Question Number 140548 by liberty last updated on 09/May/21
If f(x)= determinant (((sec^2 x        1                   1)),((cos^2 x    cos^2 x      csc^2 x)),((   1            cos^2 x      tan ^2 x)))  evaluate ∫_0 ^(π/4)  f(x) dx.
Iff(x)=|sec2x11cos2xcos2xcsc2x1cos2xtan2x|evaluateπ/40f(x)dx.
Answered by EDWIN88 last updated on 09/May/21
I=∫_0 ^(π/4) f(x) dx =  determinant (((∫_0 ^(π/4) sec^2 x dx               1                          1)),((∫_0 ^(π/4) cos^2 x dx     ∫_0 ^(π/4) cos^2 x dx    ∫_0 ^(π/4) csc^2 x dx)),((           1                ∫_0 ^(π/4) cos^2 x dx      ∫_0 ^(π/4) tan^2  x dx)))  (1)∫_0 ^(π/4) sec^2 x dx= 1    (2) ∫_0 ^(π/4) cos^2 x dx = ∫_0 ^(π/4) (((1+cos 2x)/2))dx=[((x+((sin 2x)/2))/2) ]_0 ^(π/4) =((π+2)/8)  (3)∫_0 ^(π/4) csc^2 x dx=−1   (4)∫_0 ^(π/4)  tan^2  x dx=∫_0 ^(π/4) (sec^2 x−1)dx=[ tan x−x ]_0 ^(π/4) =((4−π)/4)   I=  determinant (((  1              1            1 )),((((π+2)/8)     ((π+2)/8)     −1)),(( 1           ((π+2)/8)      ((4−π)/4))))
I=π/40f(x)dx=|π/40sec2xdx11π/40cos2xdxπ/40cos2xdxπ/40csc2xdx1π/40cos2xdxπ/40tan2xdx|(1)π/40sec2xdx=1(2)π/40cos2xdx=π/40(1+cos2x2)dx=[x+sin2x22]0π/4=π+28(3)π/40csc2xdx=1(4)π/40tan2xdx=π/40(sec2x1)dx=[tanxx]0π/4=4π4I=|111π+28π+2811π+284π4|

Leave a Reply

Your email address will not be published. Required fields are marked *