Menu Close

if-f-x-g-y-then-why-d-dx-f-x-d-dy-g-y-




Question Number 11563 by Nayon last updated on 28/Mar/17
if  f(x)=g(y)  then why (d/dx)(f(x))=(d/dy)(g(y))?
$${if}\:\:{f}\left({x}\right)={g}\left({y}\right) \\ $$$${then}\:{why}\:\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)=\frac{{d}}{{dy}}\left({g}\left({y}\right)\right)? \\ $$
Commented by mrW1 last updated on 28/Mar/17
this is not always correct. but  (d/dx)(f(x))=(d/dy)(g(y))×(dy/dx)    let′s look at  x^2 =y^3 +1  (d/dx)(f(x))=2x  (d/dy)(g(y))=3y^2   (d/dx)(f(x))≠(d/dy)(g(y))
$${this}\:{is}\:{not}\:{always}\:{correct}.\:{but} \\ $$$$\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)=\frac{{d}}{{dy}}\left({g}\left({y}\right)\right)×\frac{{dy}}{{dx}} \\ $$$$ \\ $$$${let}'{s}\:{look}\:{at} \\ $$$${x}^{\mathrm{2}} ={y}^{\mathrm{3}} +\mathrm{1} \\ $$$$\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)=\mathrm{2}{x} \\ $$$$\frac{{d}}{{dy}}\left({g}\left({y}\right)\right)=\mathrm{3}{y}^{\mathrm{2}} \\ $$$$\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)\neq\frac{{d}}{{dy}}\left({g}\left({y}\right)\right) \\ $$
Commented by Nayon last updated on 28/Mar/17
mrw1 please ans the question id no.11571
$${mrw}\mathrm{1}\:{please}\:{ans}\:{the}\:{question}\:{id}\:{no}.\mathrm{11571} \\ $$
Answered by sma3l2996 last updated on 28/Mar/17
that not correct  the correct is :  if f(x)=g(y)  d(f(x))=d(g(y))⇔((d(f(x)))/dx)dx=((d(g(y)))/dy)dy
$${that}\:{not}\:{correct} \\ $$$${the}\:{correct}\:{is}\:: \\ $$$${if}\:{f}\left({x}\right)={g}\left({y}\right) \\ $$$${d}\left({f}\left({x}\right)\right)={d}\left({g}\left({y}\right)\right)\Leftrightarrow\frac{{d}\left({f}\left({x}\right)\right)}{{dx}}{dx}=\frac{{d}\left({g}\left({y}\right)\right)}{{dy}}{dy} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *