Menu Close

If-f-x-is-a-function-satisfying-f-x-y-f-x-f-y-for-all-x-y-N-such-that-f-1-3-and-x-1-n-f-x-120-Then-find-the-value-of-n-




Question Number 257 by abcd last updated on 25/Jan/15
If f(x) is a function satisfying  f(x+y)=f(x)f(y) for all x,y∈N such  that f(1)=3 and Σ_(x=1) ^n f(x)=120. Then find  the value of n.
Iff(x)isafunctionsatisfyingf(x+y)=f(x)f(y)forallx,yNsuchthatf(1)=3andnx=1f(x)=120.Thenfindthevalueofn.
Answered by 123456 last updated on 17/Dec/14
f(2)=f(1+1)=f(1)f(1)=3∙3=9  f(3)=f(2+1)=f(2)f(1)=9∙3=27  f(4)=f(3+1)=f(3)f(1)=27∙3=81  f(4)=f(2+2)=f(2)f(2)=9∙9=81  then we can see that f(x)=3^x   Σ_(x=1) ^n 3^x =((3(3^n −1))/(3−1))=120  ((3(3^n −1))/2)=120  3^n −1=(2/3)∙120=80  3^n =81  3^n =3^4   n=4  3+9+27+81=120
f(2)=f(1+1)=f(1)f(1)=33=9f(3)=f(2+1)=f(2)f(1)=93=27f(4)=f(3+1)=f(3)f(1)=273=81f(4)=f(2+2)=f(2)f(2)=99=81thenwecanseethatf(x)=3xnx=13x=3(3n1)31=1203(3n1)2=1203n1=23120=803n=813n=34n=43+9+27+81=120