Menu Close

If-f-x-sin-2-x-sin-2-x-pi-3-cos-x-cos-x-pi-3-and-g-5-4-1-then-gof-x-




Question Number 248 by sushmitak last updated on 25/Jan/15
If f(x)=sin^2 x+sin^2 (x+π/3)+cos x cos (x+π/3)  and  g(5/4)=1 then  gof(x)=?
Iff(x)=sin2x+sin2(x+π/3)+cosxcos(x+π/3)andg(5/4)=1thengof(x)=?
Answered by 123456 last updated on 17/Dec/14
f(x)=sin^2 x+sin^2 (x+(π/3))+cos x cos(x+(π/3))  cos (x+(π/3))=cos x cos(π/3)−sin x sin (π/3)   =(1/2)cos x−((√3)/2)sin x  cos x cos (x+(π/3))=(1/2)cos^2 x−((√3)/2)cos x sin x  sin (x+(π/3))=sin x cos (π/3)+cos x sin (π/3)  =(1/2)sin x+((√3)/2)cos x  sin^2 (x+(π/3))=(1/4)sin^2 x+((√3)/2)cos x sin x+(3/4)cos^2 x  f(x)=sin^2 x+sin^2 (x+(π/3))+cos x cos(x+(π/3))  =sin^2 x+(1/4)sin^2 x+((√3)/2)cos x sin x+(3/4)cos^2 x+(1/2)cos^2 x−((√3)/2)cos x sin x  =(1+(1/4))sin^2 x+((3/4)+(1/2))cos^2 x  =(5/4)sin^2 x+(5/4)cos^2 x  =(5/4)(sin^2 x+cos^2 x)=(5/4)  then  g[f(x)]=g((5/4))=1
f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3)cos(x+π3)=cosxcosπ3sinxsinπ3=12cosx32sinxcosxcos(x+π3)=12cos2x32cosxsinxsin(x+π3)=sinxcosπ3+cosxsinπ3=12sinx+32cosxsin2(x+π3)=14sin2x+32cosxsinx+34cos2xf(x)=sin2x+sin2(x+π3)+cosxcos(x+π3)=sin2x+14sin2x+32cosxsinx+34cos2x+12cos2x32cosxsinx=(1+14)sin2x+(34+12)cos2x=54sin2x+54cos2x=54(sin2x+cos2x)=54theng[f(x)]=g(54)=1