Menu Close

if-F-x-u-x-v-x-g-x-t-dt-determine-a-expression-for-F-x-




Question Number 67972 by mathmax by abdo last updated on 02/Sep/19
if F(x)=∫_(u(x)) ^(v(x)) g(x,t)dt     determine a expression for F^′ (x).
ifF(x)=u(x)v(x)g(x,t)dtdetermineaexpressionforF(x).
Answered by Tanmay chaudhury last updated on 03/Sep/19
(dF/dx)=∫_(u(x)) ^(v(x))  (∂/∂x)(g(x,t)dx)+((dv(x))/dx)g(x,v(x))−((du(x))/dx)g(x,u(x))
dFdx=u(x)v(x)x(g(x,t)dx)+dv(x)dxg(x,v(x))du(x)dxg(x,u(x))
Commented by mathmax by abdo last updated on 03/Sep/19
can you sind the sourse of this formula sir tanmay or   send the proof ...
canyousindthesourseofthisformulasirtanmayorsendtheproof
Commented by Tanmay chaudhury last updated on 03/Sep/19
ok sir...
oksir
Commented by mind is power last updated on 03/Sep/19
in my comment F(x)=∫_v ^u g(x,t)dt
inmycommentF(x)=vug(x,t)dt
Commented by mathmax by abdo last updated on 03/Sep/19
let verify this formulae by  F(x) =∫_x ^x^2  e^(−xt) dt we have  g(x,t) =e^(−xt)    , u(x)=x  and v(x)=x^2   gormulae give  F^′ (x) =∫_(u(x)) ^(v(x)) (∂g/∂x)(x,t)dt  +v^′ g(x,v)−u^′ g(x,u)  =∫_x ^x^2   −t e^(−xt)  dt  +(2x)e^(−x^3 ) −e^(−x^2 )    by partswe get  ∫_x ^x^2  t e^(−xt)  dt =[−(t/x)e^(−xt) ]_x ^x^2  −∫_x ^x^2  (−(1/x))e^(−xt) dt  =e^(−x^2 ) −x e^(−x^3 )  +(1/x) ∫_x ^x^2  e^(−xt) dt =e^(−x^2 ) −x e^(−x^3 ) +(1/x)[−(1/x)e^(−xt) ]_x ^x^2    =e^(−x^2 ) −xe^(−x^3 ) −(1/x^2 ){  e^(−x^3 ) −e^(−x^2 ) }  =(1+(1/x^2 ))e^(−x^2 ) −(x+(1/x^2 ))e^(−x^3  )  ⇒F^′ (x) =−(1+(1/x^2 ))e^(−x^2 ) +(x+(1/x^2 ))e^(−x^3 )   +2x e^(−x^3 ) −e^(−x^2 )  =−(2+(1/x^2 ) )e^(−x^2 ) (3x+(1/x^2 ))e^(−x^3 )  now let find F(x) directly  F(x) =[−(1/x)e^(−xt) ]_x ^x^2   =−(1/x){ e^(−x^3 ) −e^(−x^2 ) } =(1/x){e^(−x^2 ) −e^(−x^3 ) } ⇒  F^′ (x) =−(1/x^2 ){ e^(−x^2 ) −e^(−x^3 ) } +(1/x){−2x e^(−x^2 ) +3x^2 e^(−x^3 ) }  =−(1/x^2 )e^(−x^2 ) +(1/x^2 )e^(−x^3 ) −2e^(−x^2 )   +3x e^(−x^3 )   =−((1/x^2 ) +2)e^(−x^2 )   +(3x+(1/x^2 ))e^(−x^2 )      we get the same result  so the formulae is correct .
letverifythisformulaebyF(x)=xx2extdtwehaveg(x,t)=ext,u(x)=xandv(x)=x2gormulaegiveF(x)=u(x)v(x)gx(x,t)dt+vg(x,v)ug(x,u)=xx2textdt+(2x)ex3ex2bypartswegetxx2textdt=[txext]xx2xx2(1x)extdt=ex2xex3+1xxx2extdt=ex2xex3+1x[1xext]xx2=ex2xex31x2{ex3ex2}=(1+1x2)ex2(x+1x2)ex3F(x)=(1+1x2)ex2+(x+1x2)ex3+2xex3ex2=(2+1x2)ex2(3x+1x2)ex3nowletfindF(x)directlyF(x)=[1xext]xx2=1x{ex3ex2}=1x{ex2ex3}F(x)=1x2{ex2ex3}+1x{2xex2+3x2ex3}=1x2ex2+1x2ex32ex2+3xex3=(1x2+2)ex2+(3x+1x2)ex2wegetthesameresultsotheformulaeiscorrect.
Answered by mind is power last updated on 03/Sep/19
let G(x,t)=∫g(x,t)dt  F(x)=G(x,v(x))−G(x,u(x))  F′(x)=(∂/∂x){G(x,v(x))−G(x,u(x))}..1  (∂/∂x)(f(u,v))=(∂u/∂x).((∂f(u,v))/∂x)+(∂v/∂x).((∂f(u,v))/∂v)  we apply this in 1  F′(x)=  (∂/∂x)G(x,u(x))+(∂u/∂x) ((∂ G(x,u(x)))/∂t)−((∂G(x,v(x))/∂x)−(∂v/∂x).((∂G(x,v(x))/∂t)    withe ((∂G(x,t))/∂t)=g(x,t)  ((∂G(x,t))/∂x)=(∂/∂x)∫g(x,t)dt=∫((∂g(x,t))/∂x)dt  we get   ∫_0 ^u ((∂g(x,t)dt)/∂x)+u^′ g(x,u)−∫_0 ^v ((∂g(x,t))/∂x)dt−v^, g(x,v)  =∫_v ^u ((∂g(x,t))/∂x)dt+u^′ g(x,u)−v^′ g(x,v)
letG(x,t)=g(x,t)dtF(x)=G(x,v(x))G(x,u(x))F(x)=x{G(x,v(x))G(x,u(x))}..1x(f(u,v))=ux.f(u,v)x+vx.f(u,v)vweapplythisin1F(x)=xG(x,u(x))+uxG(x,u(x))tG(x,v(x)xvx.G(x,v(x)twitheG(x,t)t=g(x,t)G(x,t)x=xg(x,t)dt=g(x,t)xdtweget0ug(x,t)dtx+ug(x,u)0vg(x,t)xdtv,g(x,v)=vug(x,t)xdt+ug(x,u)vg(x,v)
Commented by mathmax by abdo last updated on 10/Sep/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *