Menu Close

If-f-x-x-2-4-x-2-x-2-3-0-1-find-Alpha-3-Epsalum-0-1-Find-delta-




Question Number 5232 by sanusihammed last updated on 02/May/16
If f(x) = ((x^2 −4)/(x−2))          x→2    α = 3 . Σ = 0.1   find   δ    Alpha = 3   Epsalum = 0.1 Find delta
Iff(x)=x24x2x2α=3.Σ=0.1findδAlpha=3Epsalum=0.1Finddelta
Commented by FilupSmith last updated on 02/May/16
What is the definition of δ?
Whatisthedefinitionofδ?
Answered by Yozzii last updated on 02/May/16
According to the ε−δ definition of  the limit, the limit lim_(x→a) f(x)=α  exists if,for any ε>0 there is a δ>0,  such that   ∣f(x)−α∣<ε  whenever  0<∣x−a∣<δ.  So using f(x)=((x^2 −4)/(x−2)) and α=4    {not 3 since lim_(x→2) f(x)=lim_(x→2) (((x+2)(x−2))/(x−2))=lim_(x→2) (x+2)=2+2=4≠3.}  ⇒∣((x^2 −4)/(x−2))−4∣=∣((x^2 −4−4x+8)/(x−2))∣  =∣((x^2 −4x+4)/(x−2))∣=∣(((x−2)^2 )/(x−2))∣  =∣x−2∣  Since ∣f(x)−4∣<ε and ∣f(x)−4∣=∣x−2∣  ⇒∣x−2∣<ε⇒ let ε=δ. Hence, if  ε=0.1, δ=0.1.
Accordingtotheϵδdefinitionofthelimit,thelimitlimxaf(x)=αexistsif,foranyϵ>0thereisaδ>0,suchthatf(x)α∣<ϵwhenever0<∣xa∣<δ.Sousingf(x)=x24x2andα=4{not3sincelimx2f(x)=limx2(x+2)(x2)x2=limx2(x+2)=2+2=43.}⇒∣x24x24∣=∣x244x+8x2=∣x24x+4x2∣=∣(x2)2x2=∣x2Sincef(x)4∣<ϵandf(x)4∣=∣x2⇒∣x2∣<ϵletϵ=δ.Hence,ifϵ=0.1,δ=0.1.

Leave a Reply

Your email address will not be published. Required fields are marked *