If-f-x-xtan-1-1-x-x-0-0-x-0-show-that-f-is-countinous-but-not-differentiable-at-x-0- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 11608 by agni5 last updated on 29/Mar/17 Iff(x)=xtan−1(1x),x≠0=0,x=0showthatfiscountinousbutnotdifferentiableatx=0. Answered by mrW1 last updated on 30/Mar/17 f(0)=0limx→0f(x)=limx→0xtan−1(1x)=(limx→0x)×(limx→0tan−11x)=0×(±π2)=0sincef(0)=limx→0f(x)⇒f(x)iscontinousatx=0.f′(x)=tan−1(1x)+x(11+1x2)(−1x2)=tan−1(1x)−x1+x2limx→−0f′(x)=−π2−0=−π2limx→+0f′(x)=π2−0=π2sincelimx→−0f′(x)≠limx→+0f′(x)⇒f(x)isnotdifferentiableatx=0. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-parabola-with-equation-y-x-2-k-5-intersects-a-circle-with-equation-x-2-y-2-25-at-exactly-3-points-A-B-C-Determine-all-such-positive-integers-k-for-which-the-area-of-ABC-is-an-integerNext Next post: Question-77144 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.