Menu Close

If-f-x-xtan-1-1-x-x-0-0-x-0-show-that-f-is-countinous-but-not-differentiable-at-x-0-




Question Number 11608 by agni5 last updated on 29/Mar/17
If f(x)=xtan^(−1) ((1/x)) ,       x≠0              =0 ,                            x=0  show that f is countinous but not differentiable  at x=0.
Iff(x)=xtan1(1x),x0=0,x=0showthatfiscountinousbutnotdifferentiableatx=0.
Answered by mrW1 last updated on 30/Mar/17
f(0)=0  lim_(x→0)  f(x)=lim_(x→0)  xtan^(−1) ((1/x))=(lim_(x→0)  x)×(lim_(x→0)  tan^(−1) (1/x))  =0×(±(π/2))=0  since f(0)=lim_(x→0)  f(x)  ⇒f(x) is continous at x=0.    f′(x)=tan^(−1) ((1/x))+x((1/(1+(1/x^2 ))))(−(1/x^2 ))=tan^(−1) ((1/x))−(x/(1+x^2 ))  lim_(x→−0)  f′(x)=−(π/2)−0=−(π/2)  lim_(x→+0)  f′(x)=(π/2)−0=(π/2)  since lim_(x→−0)  f′(x)≠lim_(x→+0)  f′(x)  ⇒f(x) is not differentiable at x=0.
f(0)=0limx0f(x)=limx0xtan1(1x)=(limx0x)×(limx0tan11x)=0×(±π2)=0sincef(0)=limx0f(x)f(x)iscontinousatx=0.f(x)=tan1(1x)+x(11+1x2)(1x2)=tan1(1x)x1+x2limx0f(x)=π20=π2limx+0f(x)=π20=π2sincelimx0f(x)limx+0f(x)f(x)isnotdifferentiableatx=0.

Leave a Reply

Your email address will not be published. Required fields are marked *