Menu Close

If-g-x-4cos-4-x-2cos-2x-1-2-cos-4x-x-7-1-7-then-tbe-value-of-g-g-100-is-equal-to-




Question Number 143959 by bobhans last updated on 20/Jun/21
  If g(x)=(4cos^4 x−2cos 2x−(1/2)cos 4x−x^7 )^(1/7)   then tbe value of g(g(100)) is  equal to ...
$$\:\:\mathrm{If}\:\mathrm{g}\left(\mathrm{x}\right)=\left(\mathrm{4cos}\:^{\mathrm{4}} \mathrm{x}−\mathrm{2cos}\:\mathrm{2x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{4x}−\mathrm{x}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{7}}} \\ $$$$\mathrm{then}\:\mathrm{tbe}\:\mathrm{value}\:\mathrm{of}\:\mathrm{g}\left(\mathrm{g}\left(\mathrm{100}\right)\right)\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}\:… \\ $$
Answered by Olaf_Thorendsen last updated on 20/Jun/21
X = 4cos^4 x−2cos2x−(1/2)cos4x  X = 4(((1+cos2x)/2))^2 −2cos2x−(1/2)(2cos^2 2x−1)  X = (3/2)  g(x) = (X−x^7 )^(1/7)   g(x) = ((3/2)−x^7 )^(1/7)   g(100) = ((3/2)−100^7 )^(1/7)   gog(100) = ((3/2)−g(100)^7 )^(1/7)   gog(100) = ((3/2)−((3/2)−100^7 ))^(1/7)   gog(100) = 100
$$\mathrm{X}\:=\:\mathrm{4cos}^{\mathrm{4}} {x}−\mathrm{2cos2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos4}{x} \\ $$$$\mathrm{X}\:=\:\mathrm{4}\left(\frac{\mathrm{1}+\mathrm{cos2}{x}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{2cos2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2cos}^{\mathrm{2}} \mathrm{2}{x}−\mathrm{1}\right) \\ $$$$\mathrm{X}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${g}\left({x}\right)\:=\:\left(\mathrm{X}−{x}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{7}}} \\ $$$${g}\left({x}\right)\:=\:\left(\frac{\mathrm{3}}{\mathrm{2}}−{x}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{7}}} \\ $$$${g}\left(\mathrm{100}\right)\:=\:\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{100}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{7}}} \\ $$$${g}\mathrm{o}{g}\left(\mathrm{100}\right)\:=\:\left(\frac{\mathrm{3}}{\mathrm{2}}−{g}\left(\mathrm{100}\right)^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{7}}} \\ $$$${g}\mathrm{o}{g}\left(\mathrm{100}\right)\:=\:\left(\frac{\mathrm{3}}{\mathrm{2}}−\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{100}^{\mathrm{7}} \right)\right)^{\frac{\mathrm{1}}{\mathrm{7}}} \\ $$$${g}\mathrm{o}{g}\left(\mathrm{100}\right)\:=\:\mathrm{100} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *