Menu Close

If-gcd-p-q-1-prove-that-gcd-p-p-q-q-p-q-pq-1-Related-to-Q-69939-




Question Number 70370 by Rasheed.Sindhi last updated on 04/Oct/19
If  gcd(p , q)=1,prove that       gcd(p(p+q) , q(p+q) , pq)=1  Related to Q#69939
Ifgcd(p,q)=1,provethatgcd(p(p+q),q(p+q),pq)=1You can't use 'macro parameter character #' in math mode
Commented by mind is power last updated on 03/Oct/19
suppose That a= gcd(p(p+q),q(p+q),pq)≠1  ⇒ ∃ prime number x that x∣a  ⇒x∣pq,x∣q(p+q),x∣p(p+q)  x∣pq+q^2 ,x∣pq+p^2 ,x∣pq  ⇒x∣q^2 ⇒x∣q  x is prime  x∣p^2 ⇒x∣p  (x∣p ∧ x∣q)⇔x∣gcd(p,q)=1⇒x∣1 absurd  x is prime  ⇒ther exist not prime factor of a∈N⇔(a=1)
supposeThata=gcd(p(p+q),q(p+q),pq)1primenumberxthatxaxpq,xq(p+q),xp(p+q)xpq+q2,xpq+p2,xpqxq2xqxisprimexp2xp(xpxq)xgcd(p,q)=1x1absurdxisprimetherexistnotprimefactorofaN(a=1)
Commented by MJS last updated on 03/Oct/19
good, but I think the last line should be  x∣p ∧ x∣q ∧ gcd (p, q)=1 ⇒ x=1  because obviously  gcd (p, q)=r ∧ x∣p ∧ x∣q ⇒ x≤r
good,butIthinkthelastlineshouldbexpxqgcd(p,q)=1x=1becauseobviouslygcd(p,q)=rxpxqxr
Commented by mind is power last updated on 03/Oct/19
x∣a∧x∣b⇔x∣gcd(a,b)  ifx∣gcd(a,b)⇒x∣a∧x∣b  ifx∣a∧x∣b⇒x∣gcd(a,b)
xaxbxgcd(a,b)ifxgcd(a,b)xaxbifxaxbxgcd(a,b)
Commented by Rasheed.Sindhi last updated on 04/Oct/19
Sir, Thanks & Appreciation→you!
Sir,Thanks&Appreciationyou!
Answered by $@ty@m123 last updated on 04/Oct/19
If possible let us assume that   gcd{p(p+q),q(p+q),pq}=a≠1  Then ∃ m,n,r∈N with gcd(m,n,r)=1  such that  p(p+q)=a.m ___(1)  q(p+q)=a.n  ___(2)  pq=a.r  ___(3)  From (1) &(3)  p^2 +ar=am  p^2 =a(m−r) ___(4)  From (2) &(3)  ar+q^2 =an  q^2 =a(n−r) ___(5)  (4) &(5)⇒p^2 ∣a ∧q^2 ∣a  ⇒p∣a ∧q∣a  ⇒gcd(p,q)=a≠1  which is a contradiction.  ∴ our assumption is wrong.  ∴ gcd{p(p+q),q(p+q),pq}=1
Ifpossibleletusassumethatgcd{p(p+q),q(p+q),pq}=a1Thenm,n,rNwithgcd(m,n,r)=1suchthatp(p+q)=a.m___(1)q(p+q)=a.n___(2)pq=a.r___(3)From(1)&(3)p2+ar=amp2=a(mr)___(4)From(2)&(3)ar+q2=anq2=a(nr)___(5)(4)&(5)p2aq2apaqagcd(p,q)=a1whichisacontradiction.ourassumptioniswrong.gcd{p(p+q),q(p+q),pq}=1
Commented by Rasheed.Sindhi last updated on 04/Oct/19
Thank you sir.I appriciate your approach!
Thankyousir.Iappriciateyourapproach!

Leave a Reply

Your email address will not be published. Required fields are marked *