Menu Close

If-gt-0-and-gt-0-prove-0-ln-x-2-x-2-dx-pi-2-ln-




Question Number 136425 by Ar Brandon last updated on 21/Mar/21
If α>0 and β>0, prove  ∫_0 ^∞ ((ln(αx))/(β^2 +x^2 ))dx=(π/(2β))ln(αβ)
Ifα>0andβ>0,prove0ln(αx)β2+x2dx=π2βln(αβ)
Commented by Dwaipayan Shikari last updated on 21/Mar/21
Φ=∫_0 ^∞ ((log(α))/(β^2 +x^2 ))+∫_0 ^∞ ((log(x))/(x^2 +β^2 ))dx  =((πlog(α))/(2β))+τ′(0)  τ(η)=∫_0 ^∞ (x^η /(β^2 +x^2 ))dx=β^(η−1) ∫_0 ^∞ (u^η /(u^2 +1))du     x=βu  =(1/2)β^(η−1) ∫_0 ^∞ (t^(((η+1)/2)−1) /((t+1)^((η/2)+(1/2)−(η/2)+(1/2)) ))du=(β^(η−1) /2).((Γ(((η+1)/2))Γ((1/2)−(η/2)))/(Γ(2)))  =(β^(η−1) /2).(π/(cos(((πη)/2))))  τ′(η)=((β^(η−1) log(β))/2).(π/(cos(((πη)/2))))+((β^(n−1) π^2 )/4)sec(((πη)/2))tan(((πη)/2))  τ′(0)=((log(β)π)/(2β))  Φ=((πlog(α))/(2β))+((πlog(β))/(2β))=((πlog(αβ))/(2β))
Φ=0log(α)β2+x2+0log(x)x2+β2dx=πlog(α)2β+τ(0)τ(η)=0xηβ2+x2dx=βη10uηu2+1dux=βu=12βη10tη+121(t+1)η2+12η2+12du=βη12.Γ(η+12)Γ(12η2)Γ(2)=βη12.πcos(πη2)τ(η)=βη1log(β)2.πcos(πη2)+βn1π24sec(πη2)tan(πη2)τ(0)=log(β)π2βΦ=πlog(α)2β+πlog(β)2β=πlog(αβ)2β
Commented by Ar Brandon last updated on 21/Mar/21
Thanks
Commented by Dwaipayan Shikari last updated on 21/Mar/21
  😃
😃
Answered by mathmax by abdo last updated on 21/Mar/21
Φ=∫_0 ^∞  ((log(αx))/(x^2  +β^2 ))dx ⇒Φ=∫_0 ^∞  ((logα+logx)/(x^2  +β^2 ))dx  =logα∫_0 ^∞  (dx/(x^2  +β^2 ))(→x=βu) +∫_0 ^∞  ((logx)/(x^2  +β^2 ))dx(→x=βu)  =logα ∫_0 ^∞  ((βdu)/(β^2 (1+u^2 ))) +∫_0 ^∞  ((log(βu))/(β^2 (1+u^2 )))βdu  =((logα)/β).(π/2) +(1/β)∫_0 ^∞   ((logβ +logu)/(1+u^2 ))du  =((πlogα)/(2β)) +((logβ)/β).(π/2) +(1/β)∫_0 ^∞  ((logu)/(1+u^2 ))du(→0)  =((π(logα+logβ))/(2β)) =(π/(2β))log(αβ)
Φ=0log(αx)x2+β2dxΦ=0logα+logxx2+β2dx=logα0dxx2+β2(x=βu)+0logxx2+β2dx(x=βu)=logα0βduβ2(1+u2)+0log(βu)β2(1+u2)βdu=logαβ.π2+1β0logβ+logu1+u2du=πlogα2β+logββ.π2+1β0logu1+u2du(0)=π(logα+logβ)2β=π2βlog(αβ)
Commented by Ar Brandon last updated on 21/Mar/21
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *