if-I-n-0-pi-4-tan-n-xdx-and-I-n-a-n-b-n-I-n-2-then-find-a-10- Tinku Tara June 3, 2023 Vector 0 Comments FacebookTweetPin Question Number 78458 by kaivan.ahmadi last updated on 17/Jan/20 ifIn=∫0π4tannxdxandIn=an+bnIn−2thenfinda10 Commented by kaivan.ahmadi last updated on 17/Jan/20 In+In−2=∫tgnxdx+∫tgn−2xdx=∫(tgnxdx+tgn−2x)dx=∫tgn−2x(tg2x+1)dxu=tgx⇒du=(1+tg2x)dx⇒∫un−2du=un−3n−1=tgn−3xn−1∣0π4=1n−1⇒In+In−2=1n−1⇒In=1n−1−In−2=an+(−1)In−2⇒an=1n−1⇒a10=19 Commented by mathmax by abdo last updated on 17/Jan/20 In=∫0π4tannxdx⇒In=∫0π4tann−2x(1+tan2x−1)dx=∫0π4(1+tan2x)tann−2xdx−∫0π4tann−2xdx=[1n−1tann−1x]0π4−In−2=1n−1−In−2ifn⩾2⇒an=1n−1andbn=−1⇒a10=19letcalculateInintermsofnwehaveIn+In−2=1n−1⇒I2n+I2n−2=12n−1letI2n=un⇒un+un−1=12n−1⇒∑k=1n(−1)k(uk+uk−1)=∑k=1n(−1)k2k−1⇒−(u1+u0)+u2+u1+….(−1)n(un+un−1)=∑k=1n(−1)k2k−1(−1)nun−u0=∑k=1n(−1)k2k−1⇒(−1)nun=u0+∑k=1n(−1)k2k−1⇒un=(−1)nu0+(−1)n∑k=1n(−1)k2k−1=π4(−1)n+(−1)n∑k=1n(−1)k2k−1⇒I2n=π4(−1)n+(−1)n∑k=1n(−1)k2k−1letdetemineI2n+1?wehaveI2n+1+I2n−1=12n⇒∑k=1n(−1)k(vk+vk−1)=∑k=1n(−1)k2k(vn=I2n+1)⇒(−1)nvn−v0=∑k=1n(−1)k2k⇒(−1)nvn=v0+∑k=1n(−1)k2k⇒vn=(−1)nv0+(−1)n∑k=1n(−1)k2kv0=I1=∫0π4tanxdx=−∫0π4−sinxcosxdx=−ln∣cosx∣]0π4=−ln(12)=12ln(2)⇒I2n+1=(−1)nln(2)2+(−1)n∑k=1n(−1)k2k Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: for-a-gt-0-and-b-gt-a-2-verify-the-follwing-claim-n-1-n-a-a-1-a-2-a-n-1-b-b-1-b-2-b-n-1-a-b-1-b-a-1-b-a-2-Next Next post: Question-143993 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.