Menu Close

if-I-n-0-pi-4-tan-n-xdx-and-I-n-a-n-b-n-I-n-2-then-find-a-10-




Question Number 78458 by kaivan.ahmadi last updated on 17/Jan/20
if I_n =∫_0 ^(π/4) tan^n xdx and I_n =a_n +b_n I_(n−2)  then find a_(10)
ifIn=0π4tannxdxandIn=an+bnIn2thenfinda10
Commented by kaivan.ahmadi last updated on 17/Jan/20
I_n +I_(n−2) =∫tg^n xdx+∫tg^(n−2) xdx=∫(tg^n xdx+tg^(n−2) x)dx  =∫tg^(n−2) x(tg^2 x+1)dx  u=tgx⇒du=(1+tg^2 x)dx⇒∫u^(n−2) du=  (u^(n−3) /(n−1))=((tg^(n−3) x)/(n−1))∣_0 ^(π/4) =(1/(n−1))  ⇒    I_n +I_(n−2) =(1/(n−1))  ⇒I_n =(1/(n−1))−I_(n−2) =a_n +(−1)I_(n−2) ⇒a_n =(1/(n−1))  ⇒a_(10) =(1/9)
In+In2=tgnxdx+tgn2xdx=(tgnxdx+tgn2x)dx=tgn2x(tg2x+1)dxu=tgxdu=(1+tg2x)dxun2du=un3n1=tgn3xn10π4=1n1In+In2=1n1In=1n1In2=an+(1)In2an=1n1a10=19
Commented by mathmax by abdo last updated on 17/Jan/20
I_n =∫_0 ^(π/4)  tan^n x dx ⇒ I_n =∫_0 ^(π/4) tan^(n−2) x (1+tan^2 x−1)dx  =∫_0 ^(π/4)  (1+tan^2 x)tan^(n−2) x dx−∫_0 ^(π/4)  tan^(n−2) x dx  =[(1/(n−1))tan^(n−1) x]_0 ^(π/4) −I_(n−2) =(1/(n−1)) −I_(n−2)    if n≥2 ⇒a_n =(1/(n−1))  and b_n =−1 ⇒a_(10) =(1/9)  let calculate I_n  interms of n we have  I_n +I_(n−2) =(1/(n−1)) ⇒I_(2n)  +I_(2n−2) =(1/(2n−1)) let I_(2n) =u_n  ⇒  u_n +u_(n−1) =(1/(2n−1)) ⇒Σ_(k=1) ^n (−1)^k (u_k +u_(k−1) ) =Σ_(k=1) ^n  (((−1)^k )/(2k−1)) ⇒  −(u_1 +u_0 )+u_2 +u_1  +....(−1)^n (u_n  +u_(n−1) )=Σ_(k=1) ^n  (((−1)^k )/(2k−1))  (−1)^n u_n −u_0 =Σ_(k=1) ^n (((−1)^k )/(2k−1)) ⇒(−1)^n u_n =u_0  +Σ_(k=1) ^n  (((−1)^k )/(2k−1)) ⇒  u_n =(−1)^n u_0  +(−1)^n Σ_(k=1) ^n  (((−1)^k )/(2k−1)) =(π/4)(−1)^n  +(−1)^n Σ_(k=1) ^n  (((−1)^k )/(2k−1))  ⇒I_(2n) =(π/4)(−1)^n  +(−1)^n  Σ_(k=1) ^n  (((−1)^k )/(2k−1))    let detemine I_(2n+1) ?  we have I_(2n+1) +I_(2n−1) =(1/(2n)) ⇒Σ_(k=1) ^n (−1)^k (v_k  +v_(k−1) )=Σ_(k=1) ^n  (((−1)^k )/(2k))  (v_n =I_(2n+1) ) ⇒(−1)^n v_n −v_0  =Σ_(k=1) ^n  (((−1)^k )/(2k)) ⇒  (−1)^n  v_n =v_0  +Σ_(k=1) ^n  (((−1)^k )/(2k)) ⇒  v_n =(−1)^n v_0  +(−1)^n  Σ_(k=1) ^n  (((−1)^k )/(2k))  v_0 =I_1 =∫_0 ^(π/4)  tanx dx =−∫_0 ^(π/4)  ((−sinx)/(cosx))dx =−ln∣cosx∣]_0 ^(π/4)   =−ln((1/( (√2)))) =(1/2)ln(2) ⇒I_(2n+1) =(−1)^n ((ln(2))/2) +(−1)^n Σ_(k=1) ^n (((−1)^k )/(2k))
In=0π4tannxdxIn=0π4tann2x(1+tan2x1)dx=0π4(1+tan2x)tann2xdx0π4tann2xdx=[1n1tann1x]0π4In2=1n1In2ifn2an=1n1andbn=1a10=19letcalculateInintermsofnwehaveIn+In2=1n1I2n+I2n2=12n1letI2n=unun+un1=12n1k=1n(1)k(uk+uk1)=k=1n(1)k2k1(u1+u0)+u2+u1+.(1)n(un+un1)=k=1n(1)k2k1(1)nunu0=k=1n(1)k2k1(1)nun=u0+k=1n(1)k2k1un=(1)nu0+(1)nk=1n(1)k2k1=π4(1)n+(1)nk=1n(1)k2k1I2n=π4(1)n+(1)nk=1n(1)k2k1letdetemineI2n+1?wehaveI2n+1+I2n1=12nk=1n(1)k(vk+vk1)=k=1n(1)k2k(vn=I2n+1)(1)nvnv0=k=1n(1)k2k(1)nvn=v0+k=1n(1)k2kvn=(1)nv0+(1)nk=1n(1)k2kv0=I1=0π4tanxdx=0π4sinxcosxdx=lncosx]0π4=ln(12)=12ln(2)I2n+1=(1)nln(2)2+(1)nk=1n(1)k2k

Leave a Reply

Your email address will not be published. Required fields are marked *