Menu Close

If-is-eleminated-from-the-equation-x-a-cos-and-y-b-cos-then-prove-that-x-2-a-2-y-2-b-2-2xy-ab-cos-sin-2-




Question Number 75484 by vishalbhardwaj last updated on 11/Dec/19
If θ is eleminated from the  equation x=a cos(θ−α) and  y=b cos(θ−β) then prove that  (x^2 /a^2 ) + (y^2 /b^2 ) −((2xy)/(ab)) cos(α−β)   = sin^2 (α−β)
Ifθiseleminatedfromtheequationx=acos(θα)andy=bcos(θβ)thenprovethatx2a2+y2b22xyabcos(αβ)=sin2(αβ)
Answered by MJS last updated on 12/Dec/19
x=acos (θ−α) ⇒ θ=α−arccos (x/a)  y=bcos (α−β−arccos (x/a))       [cos (u+v) =cos u cos v −sin u sin v]       [sin (u+v) =cos u sin v  −sin u cos v]  y=(b/a)xcos (α−β)±(b/a)(√(a^2 −x^2 ))sin (α−β)    (x^2 /a^2 )+(y^2 /b^2 )−((2xy)/(ab))cos (α−β) =sin^2  (α−β)  ⇒ y=(b/a)xcos (α−β)±(b/a)(√(a^2 −x^2 ))sin (α−β)  same as above ⇒ proved
x=acos(θα)θ=αarccosxay=bcos(αβarccosxa)[cos(u+v)=cosucosvsinusinv][sin(u+v)=cosusinvsinucosv]y=baxcos(αβ)±baa2x2sin(αβ)x2a2+y2b22xyabcos(αβ)=sin2(αβ)y=baxcos(αβ)±baa2x2sin(αβ)sameasaboveproved

Leave a Reply

Your email address will not be published. Required fields are marked *