Menu Close

If-lim-x-0-1-cos-1-cos-x-x-4-m-n-where-m-and-n-are-relative-prime-positive-integer-then-the-sum-of-the-digits-m-2-n-2-equals-




Question Number 131369 by liberty last updated on 04/Feb/21
If lim_(x→0)  ((1−cos (1−cos x))/x^4 ) = (m/n) where m and n  are relative prime positive integer   then the sum of the digits (m^2 +n^2 ) equals
Iflimx01cos(1cosx)x4=mnwheremandnarerelativeprimepositiveintegerthenthesumofthedigits(m2+n2)equals
Answered by EDWIN88 last updated on 04/Feb/21
recall lim_(x→0) ((1−cos x)/x^2 ) = (1/2)  then lim_(x→0) ((1−cos (1−cos x))/x^4 )=lim_(x→0) ((1−cos (1−cos x))/((1−cos x)^2 )).(((1−cos x)^2 )/x^4 )  change variable : 1−cos x=u  =lim_(u→0) ((1−cos u)/u^2 )× lim_(x→0) (((1−cos x)/x^2 ))^2   = (1/2)×((1/2))^2 =(1/8) ≡ (m/n)  ⇔m^2 +n^2 = 65 ; sum of the digit=11
recalllimx01cosxx2=12thenlimx01cos(1cosx)x4=limx01cos(1cosx)(1cosx)2.(1cosx)2x4changevariable:1cosx=u=limu01cosuu2×limx0(1cosxx2)2=12×(12)2=18mnm2+n2=65;sumofthedigit=11