Menu Close

If-lim-x-0-px-q-2-x-1-What-is-the-value-of-p-q-




Question Number 11444 by Joel576 last updated on 26/Mar/17
If  lim_(x→0)  (((√(px + q)) − 2)/x) = 1  What is the value of  p + q ?
Iflimx0px+q2x=1Whatisthevalueofp+q?
Answered by ajfour last updated on 26/Mar/17
then lim_(x→0)  (((√q)(1+px/q)^(1/2)  −2)/x) =1  ⇒ lim_(x→0)  (((√q)(1+((px)/(2q)) ) −2)/x) =1    = lim_(x→0)  ((((√q)−2)+(((px)/(2(√q)))))/x) =1  ⇒ (√q)=2 or q=4  then  (p/(2(√q))) =1     as (√q) =2 ,  p=4  p+q=8
thenlimx0q(1+px/q)1/22x=1limx0q(1+px2q)2x=1=limx0(q2)+(px2q)x=1q=2orq=4thenp2q=1asq=2,p=4p+q=8
Commented by Joel576 last updated on 26/Mar/17
thank you very much
thankyouverymuch
Answered by ridwan balatif last updated on 26/Mar/17
lim_(x→0) (((√(px+q))−2)/x)=1  test limit: (((√(p×0+q))−2)/0)=1→this is Impossible  so form of the test limit should be (0/0)  (√(p×0+q))−2=0  (√q)−2=0  q=4  lim_(x→0) (((√(px+4))−2)/x)=1  lim_(x→0) (((((√(px+4))−2))/x)×((((√(px+4))+2)/( (√(px+4))+2))))=1  lim_(x→0) (((px+4−4)/(x((√(px+4))+2)))=1  lim_(x→0) ((px)/(x((√(px+4))+2)))=1  lim_(x→0) (p/( (√(px+4))+2))=1  (p/( (√(p×0+4))+2))=1  (p/(2+2))=1  p=4  q=4  ∴p+q=8
limx0px+q2x=1testlimit:p×0+q20=1thisisImpossiblesoformofthetestlimitshouldbe00p×0+q2=0q2=0q=4limx0px+42x=1limx0((px+42)x×(px+4+2px+4+2))=1limx0(px+44x(px+4+2)=1limx0pxx(px+4+2)=1limx0ppx+4+2=1pp×0+4+2=1p2+2=1p=4q=4p+q=8

Leave a Reply

Your email address will not be published. Required fields are marked *