Menu Close

If-lim-x-0-px-q-2-x-1-What-is-the-value-of-p-q-




Question Number 11444 by Joel576 last updated on 26/Mar/17
If  lim_(x→0)  (((√(px + q)) − 2)/x) = 1  What is the value of  p + q ?
$$\mathrm{If}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{px}\:+\:{q}}\:−\:\mathrm{2}}{{x}}\:=\:\mathrm{1} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:{p}\:+\:{q}\:? \\ $$
Answered by ajfour last updated on 26/Mar/17
then lim_(x→0)  (((√q)(1+px/q)^(1/2)  −2)/x) =1  ⇒ lim_(x→0)  (((√q)(1+((px)/(2q)) ) −2)/x) =1    = lim_(x→0)  ((((√q)−2)+(((px)/(2(√q)))))/x) =1  ⇒ (√q)=2 or q=4  then  (p/(2(√q))) =1     as (√q) =2 ,  p=4  p+q=8
$$\mathrm{then}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{q}}\left(\mathrm{1}+\mathrm{px}/\mathrm{q}\right)^{\mathrm{1}/\mathrm{2}} \:−\mathrm{2}}{\mathrm{x}}\:=\mathrm{1} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{q}}\left(\mathrm{1}+\frac{\mathrm{px}}{\mathrm{2q}}\:\right)\:−\mathrm{2}}{\mathrm{x}}\:=\mathrm{1} \\ $$$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\sqrt{\mathrm{q}}−\mathrm{2}\right)+\left(\frac{\mathrm{px}}{\mathrm{2}\sqrt{\mathrm{q}}}\right)}{\mathrm{x}}\:=\mathrm{1} \\ $$$$\Rightarrow\:\sqrt{\mathrm{q}}=\mathrm{2}\:\mathrm{or}\:\mathrm{q}=\mathrm{4} \\ $$$$\mathrm{then} \\ $$$$\frac{\mathrm{p}}{\mathrm{2}\sqrt{\mathrm{q}}}\:=\mathrm{1}\:\:\:\:\:\mathrm{as}\:\sqrt{\mathrm{q}}\:=\mathrm{2}\:,\:\:\mathrm{p}=\mathrm{4} \\ $$$$\mathrm{p}+\mathrm{q}=\mathrm{8} \\ $$
Commented by Joel576 last updated on 26/Mar/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$
Answered by ridwan balatif last updated on 26/Mar/17
lim_(x→0) (((√(px+q))−2)/x)=1  test limit: (((√(p×0+q))−2)/0)=1→this is Impossible  so form of the test limit should be (0/0)  (√(p×0+q))−2=0  (√q)−2=0  q=4  lim_(x→0) (((√(px+4))−2)/x)=1  lim_(x→0) (((((√(px+4))−2))/x)×((((√(px+4))+2)/( (√(px+4))+2))))=1  lim_(x→0) (((px+4−4)/(x((√(px+4))+2)))=1  lim_(x→0) ((px)/(x((√(px+4))+2)))=1  lim_(x→0) (p/( (√(px+4))+2))=1  (p/( (√(p×0+4))+2))=1  (p/(2+2))=1  p=4  q=4  ∴p+q=8
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{px}+\mathrm{q}}−\mathrm{2}}{\mathrm{x}}=\mathrm{1} \\ $$$$\mathrm{test}\:\mathrm{limit}:\:\frac{\sqrt{\mathrm{p}×\mathrm{0}+\mathrm{q}}−\mathrm{2}}{\mathrm{0}}=\mathrm{1}\rightarrow\mathrm{this}\:\mathrm{is}\:\mathrm{Impossible} \\ $$$$\mathrm{so}\:\mathrm{form}\:\mathrm{of}\:\mathrm{the}\:\mathrm{test}\:\mathrm{limit}\:\mathrm{should}\:\mathrm{be}\:\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$\sqrt{\mathrm{p}×\mathrm{0}+\mathrm{q}}−\mathrm{2}=\mathrm{0} \\ $$$$\sqrt{\mathrm{q}}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{q}=\mathrm{4} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{px}+\mathrm{4}}−\mathrm{2}}{\mathrm{x}}=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\left(\sqrt{\mathrm{px}+\mathrm{4}}−\mathrm{2}\right)}{\mathrm{x}}×\left(\frac{\sqrt{\mathrm{px}+\mathrm{4}}+\mathrm{2}}{\:\sqrt{\mathrm{px}+\mathrm{4}}+\mathrm{2}}\right)\right)=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{px}+\mathrm{4}−\mathrm{4}}{\mathrm{x}\left(\sqrt{\mathrm{px}+\mathrm{4}}+\mathrm{2}\right.}\right)=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{px}}{\mathrm{x}\left(\sqrt{\mathrm{px}+\mathrm{4}}+\mathrm{2}\right)}=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{p}}{\:\sqrt{\mathrm{px}+\mathrm{4}}+\mathrm{2}}=\mathrm{1} \\ $$$$\frac{\mathrm{p}}{\:\sqrt{\mathrm{p}×\mathrm{0}+\mathrm{4}}+\mathrm{2}}=\mathrm{1} \\ $$$$\frac{\mathrm{p}}{\mathrm{2}+\mathrm{2}}=\mathrm{1} \\ $$$$\mathrm{p}=\mathrm{4} \\ $$$$\mathrm{q}=\mathrm{4} \\ $$$$\therefore\mathrm{p}+\mathrm{q}=\mathrm{8} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *