Menu Close

If-lim-x-a-f-x-g-x-exists-and-lim-x-a-g-x-0-then-show-that-lim-x-a-f-x-0-




Question Number 4363 by Rasheed Soomro last updated on 13/Jan/16
If  lim_(x→a)   ((f(x))/(g(x))) exists and lim_(x→a)  g(x)=0,  then show that  lim_(x→a)  f(x)=0.
Iflimxaf(x)g(x)existsandlimxag(x)=0,thenshowthatlimxaf(x)=0.
Answered by Yozzii last updated on 13/Jan/16
Let l=lim_(x→a) ((f(x))/(g(x))) and h(x)=((f(x))/(g(x))) (g(x)≠0). l exists if, for every  ε>0 there exists a δ>0 such that  ∣h(x)−l∣<ε whenever 0<∣x−a∣<δ.  ∴∣((f(x))/(g(x)))−lim_(x→a) ((f(x))/(g(x)))∣<ε  ∣((f(x))/(g(x)))−((lim_(x→a) f(x))/(lim_(x→a) g(x)))∣<ε  ∣((f(x)×lim_(x→a) g(x)−g(x)lim_(x→a) f(x))/(g(x)lim_(x→a) g(x)))∣<ε  ∴∣f(x)lim_(x→a) g(x)−g(x)lim_(x→a) f(x)∣<ε∣g(x)lim_(x→a) g(x)∣  Since lim_(x→a) g(x)=0 we have  ∣0−g(x)lim_(x→a) f(x)∣<0  Hence ∣−g(x)lim_(x→a) f(x)∣<0 which is false.    (If indeed lim_(x→a) f(x)=0, there exists  some error in my use of the ε−δ   definition of the limit.)
Letl=limxaf(x)g(x)andh(x)=f(x)g(x)(g(x)0).lexistsif,foreveryϵ>0thereexistsaδ>0suchthath(x)l∣<ϵwhenever0<∣xa∣<δ.∴∣f(x)g(x)limxaf(x)g(x)∣<ϵf(x)g(x)limxaf(x)limxag(x)∣<ϵf(x)×limxag(x)g(x)limxaf(x)g(x)limxag(x)∣<ϵ∴∣f(x)limxag(x)g(x)limxaf(x)∣<ϵg(x)limxag(x)Sincelimxag(x)=0wehave0g(x)limxaf(x)∣<0Henceg(x)limxaf(x)∣<0whichisfalse.(Ifindeedlimxaf(x)=0,thereexistssomeerrorinmyuseoftheϵδdefinitionofthelimit.)
Commented by prakash jain last updated on 13/Jan/16
lim_(x→3)  ((x^2 −9)/(x−3))
limx3x29x3
Commented by Yozzii last updated on 13/Jan/16
My error was incorrectly using the   result that lim_(x→a) ((f(x))/(g(x)))=((lim_(x→a) f(x))/(lim_(x→a) g(x))) given  that lim_(x→a) g(x)≠0.
Myerrorwasincorrectlyusingtheresultthatlimxaf(x)g(x)=limxaf(x)limxag(x)giventhatlimxag(x)0.
Answered by RasheedSindhi last updated on 14/Jan/16
A way which doesn′t use ε-δ  definition.  Let lim_(x→a)   ((f(x))/(g(x)))=l  f(x)=((f(x))/(g(x)))×g(x)  Applying limit to both sides  lim_(x→a) f(x)=lim_(x→a) (((f(x))/(g(x)))×g(x))  =lim_(x→a) (((f(x))/(g(x)))×g(x))=lim_(x→a) ((f(x))/(g(x)))×lim_(x→a)  g(x)  =l.0=0
Awaywhichdoesntuseϵδdefinition.Letlimxaf(x)g(x)=lf(x)=f(x)g(x)×g(x)Applyinglimittobothsideslimfxa(x)=limxa(f(x)g(x)×g(x))=limxa(f(x)g(x)×g(x))=limxaf(x)g(x)×limxag(x)=l.0=0

Leave a Reply

Your email address will not be published. Required fields are marked *