Menu Close

if-lim-x-f-x-g-x-1-does-lim-x-f-x-g-x-0-




Question Number 4158 by 123456 last updated on 30/Dec/15
if  lim_(x→∞) ((f(x))/(g(x)))=1  does  lim_(x→∞) f(x)−g(x)=0?
$$\mathrm{if} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left({x}\right)}{{g}\left({x}\right)}=\mathrm{1} \\ $$$$\mathrm{does} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)−{g}\left({x}\right)=\mathrm{0}? \\ $$
Commented by 123456 last updated on 30/Dec/15
f(x)−g(x)=g(x)[((f(x))/(g(x)))−1]
$${f}\left({x}\right)−{g}\left({x}\right)={g}\left({x}\right)\left[\frac{{f}\left({x}\right)}{{g}\left({x}\right)}−\mathrm{1}\right] \\ $$
Commented by prakash jain last updated on 30/Dec/15
f(x)=x^2 −x  g(x)=x^2   lim_(x→∞) ((f(x))/(g(x)))=1  lim_(x→∞) f(x)−g(x)≠0
$${f}\left({x}\right)={x}^{\mathrm{2}} −{x} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left({x}\right)}{{g}\left({x}\right)}=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)−{g}\left({x}\right)\neq\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *