Menu Close

If-log-3-2-log-3-2-x-5-and-log-3-2-x-7-2-are-in-arithmetic-progression-then-find-the-value-of-x-




Question Number 258 by mchawla last updated on 25/Jan/15
If log_3 2, log_3 (2^x −5) and log_3 (2^x −(7/2)) are  in arithmetic progression then find  the value of x.
Iflog32,log3(2x5)andlog3(2x72)areinarithmeticprogressionthenfindthevalueofx.
Answered by 123456 last updated on 17/Dec/14
log_3 2,log_3 (2^x −5),log_3 (2^x −(7/2))  since it was at pa then midle term is arithmetic mean of side term  2log_3 (2^x −5)=log_3 2+log_3 (2^x −(7/2))  2log_3 (2^x −5)=log_3 [2(2^x −(7/2))]  log_3 (2^x −5)^2 =log_3 (2∙2^x −7)  (2^x −5)^2 =2∙2^x −7  seting y=2^x   (y−5)^2 =2y−7  y^2 −10y+25=2y−7  y^2 −12y+32=0  Δ=(−12)^2 −4(1)(32)  =144−128  =16  y=((−(−12)±(√(16)))/(2(1)))  =((12±4)/2)  =6±2  y_1 =4⇒2^x =2^2 ⇔x=2+2πki  log_3 2,log_3 (−1),log_3 (1/2)  log_3 2,log_3 (−1),−log_3 2(wtf)  y_2 =8⇒2^x =2^3 ⇔x=3+2πki  log_3 2,log_3 3,log_3 (9/2)  log_3 2,1,2−log_3 2(r=1−log_3 2)  ignore blue part,k∈Z  then x=3
log32,log3(2x5),log3(2x72)sinceitwasatpathenmidletermisarithmeticmeanofsideterm2log3(2x5)=log32+log3(2x72)2log3(2x5)=log3[2(2x72)]log3(2x5)2=log3(22x7)(2x5)2=22x7setingy=2x(y5)2=2y7y210y+25=2y7y212y+32=0Δ=(12)24(1)(32)=144128=16y=(12)±162(1)=12±42=6±2y1=42x=22x=2+2πkilog32,log3(1),log312log32,log3(1),log32(wtf)y2=82x=23x=3+2πkilog32,log33,log392log32,1,2log32(r=1log32)ignorebluepart,kZthenx=3