Menu Close

if-log-9-a-log-4-a-b-log-6-b-what-is-a-b-




Question Number 77219 by john santu last updated on 04/Jan/20
if log_9 (a)=log_4 (a+b)=log_6 (b)   what is (a/b) ?
iflog9(a)=log4(a+b)=log6(b)whatisab?
Answered by jagoll last updated on 04/Jan/20
suppose log_9 (a)= t .  ⇒ a = 9^t , a+b = 4^t  and b = 6^t   so we written ⇒ 9^t  + 6^t  = 4^(t )   (9^t /6^t )+1=(4^t /6^t ) ⇒ ((3/2))^t −((2/3))^t +1=0  let ((3/2))^t = x ⇒ x−(1/x)+1=0  x^2 +x−1=0 ⇒ x = ((−1+ (√5))/2)  so we get x = (3^t /2^t )= (((3×3)/(3×2)))^t = (9^t /6^t )=(((√5)−1)/2)=(a/b)  (it′s namely ′The Golden Ratio′
supposelog9(a)=t.a=9t,a+b=4tandb=6tsowewritten9t+6t=4t9t6t+1=4t6t(32)t(23)t+1=0let(32)t=xx1x+1=0x2+x1=0x=1+52sowegetx=3t2t=(3×33×2)t=9t6t=512=ab(itsnamelyTheGoldenRatio
Commented by jagoll last updated on 04/Jan/20
≈ 0.6180
0.6180
Commented by john santu last updated on 05/Jan/20
thanks you
thanksyou

Leave a Reply

Your email address will not be published. Required fields are marked *