Menu Close

If-n-2-3n-1-is-divisible-by-3n-10-Find-out-all-possible-solution-for-n-




Question Number 11049 by Joel576 last updated on 09/Mar/17
If  n^2  + 3n + 1  is divisible by 3n + 10  Find out all possible solution for n
Ifn2+3n+1isdivisibleby3n+10Findoutallpossiblesolutionforn
Commented by ajfour last updated on 09/Mar/17
cant figure any other than ±3 .
cantfigureanyotherthan±3.
Answered by mrW1 last updated on 09/Mar/17
let ((n^2 +3n+1)/(3n+10))=m, m∈Z  n^2 +3n+1=m(3n+10)  n^2 +3(1−m)n+(1−10m)=0  n=((3(m−1)±(√(9(1−m)^2 −4(1−10m))))/2)  n=((3(m−1)±(√(9−18m+9m^2 −4+40m)))/2)  n=((3(m−1)±(√(9m^2 +22m+5)))/2)  n=((3(m−1)±3(√(m^2 +((22)/9)m+(5/9))))/2)  n=((3[m−1±(√(m^2 +((22)/9)m+(5/9)))])/2)     ...(i)    for n to be integer it must be  m^2 +((22)/9)m+(5/9)=k^2 ,  k∈N  m^2 +((22)/9)m+(5/9)−k^2 =0  m=((−((22)/9)±(√(((22^2 )/(81))−4×((5−9k^2 )/9))))/2)  m=((−22±(√(22^2 −4×9×(5−9k^2 ))))/(2×9))  m=((−11±(√(76+(9k)^2 )))/9)   ...(ii)    for m to be integer it must be  76+(9k)^2 =i^2 ,  i∈N  or  (i+9k)(i−9k)=76=1×76=2×38=4×19    i−9k=1  i+9k=76    ⇒no integer solution    i−9k=2  i+9k=38    ⇒i=20 and k=2    i−9k=4  i+9k=19    ⇒no integer solution    ⇒the only one solution is   i=20 and k=2    from (ii):  ⇒m=1 or  ⇒m=−((31)/9) (no integer)    from (i) with m=1:  ⇒n=±3
letn2+3n+13n+10=m,mZn2+3n+1=m(3n+10)n2+3(1m)n+(110m)=0n=3(m1)±9(1m)24(110m)2n=3(m1)±918m+9m24+40m2n=3(m1)±9m2+22m+52n=3(m1)±3m2+229m+592n=3[m1±m2+229m+59]2(i)forntobeintegeritmustbem2+229m+59=k2,kNm2+229m+59k2=0m=229±222814×59k292m=22±2224×9×(59k2)2×9m=11±76+(9k)29(ii)formtobeintegeritmustbe76+(9k)2=i2,iNor(i+9k)(i9k)=76=1×76=2×38=4×19i9k=1i+9k=76nointegersolutioni9k=2i+9k=38i=20andk=2i9k=4i+9k=19nointegersolutiontheonlyonesolutionisi=20andk=2from(ii):m=1orm=319(nointeger)from(i)withm=1:n=±3
Commented by Joel576 last updated on 10/Mar/17
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *