Menu Close

If-n-gt-1-prove-by-mathematical-induction-that-n-n-1-1-n-1-lt-1-1-2-1-3-1-4-1-n-




Question Number 5513 by 314159 last updated on 17/May/16
If n>1, prove by mathematical induction that  n((n+1)^(1/n) −1) < 1+(1/2)+(1/3)+(1/4)+...(1/n).
$${If}\:{n}>\mathrm{1},\:{prove}\:{by}\:{mathematical}\:{induction}\:{that} \\ $$$${n}\left(\left({n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{{n}}} −\mathrm{1}\right)\:<\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…\frac{\mathrm{1}}{{n}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *