Menu Close

If-n-is-a-multiple-of-4-and-i-1-find-the-sum-of-the-series-S-1-2i-3i-2-n-1-i-n-




Question Number 141585 by ZiYangLee last updated on 20/May/21
If n is a multiple of 4 and i=(√(−1)) ,   find the sum of the series     S=1+2i+3i^2 +......+(n+1)i^n
Ifnisamultipleof4andi=1,findthesumoftheseriesS=1+2i+3i2++(n+1)in
Answered by mathmax by abdo last updated on 21/May/21
S=1+2i+3i^2 +....+(n+1)i^n  =Σ_(k=0) ^n (k+1)i^k   we have Σ_(k=0) ^n x^k   =((x^(n+1) −1)/(x−1))  (x≠1) ⇒Σ_(k=1) ^n  kx^(k−1)  =(d/dx)(((x^(n+1) −1)/(x−1)))  =((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 )) ⇒Σ_(k=0) ^(n−1)  (k+1)x^k  ⇒let change n by n+1 ⇒  Σ_(k=0) ^n  (k+1)x^k  =(((n+1)x^(n+2) −(n+2)x^(n+1)  +1)/((x−1)^2 ))  if n=4p ⇒Σ_(k=0) ^n (k+1)i^k  =(((4p+1)i^(4p+2) −(4p+2)i^(4p+1)  +1)/((i−1)^2 ))  =((−(4p+1)−(4p+2)i+1)/(−2i)) =((4p+1+(4p+2)i+1)/(2i))  =−(i/2)(n+1+(n+2)i +1)  =(1/2)(−i(n+1) +n+2 −i)
S=1+2i+3i2+.+(n+1)in=k=0n(k+1)ikwehavek=0nxk=xn+11x1(x1)k=1nkxk1=ddx(xn+11x1)=nxn+1(n+1)xn+1(x1)2k=0n1(k+1)xkletchangenbyn+1k=0n(k+1)xk=(n+1)xn+2(n+2)xn+1+1(x1)2ifn=4pk=0n(k+1)ik=(4p+1)i4p+2(4p+2)i4p+1+1(i1)2=(4p+1)(4p+2)i+12i=4p+1+(4p+2)i+12i=i2(n+1+(n+2)i+1)=12(i(n+1)+n+2i)

Leave a Reply

Your email address will not be published. Required fields are marked *